Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 11: e16208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842042

RESUMO

Since the industrial revolution, oceans have become substantially noisier. The noise increase is mainly caused by increased shipping, resource exploration, and infrastructure development affecting marine life at multiple levels, including behavior and physiology. Together with increasing anthropogenic noise, climate change is altering the thermal structure of the oceans, which in turn might affect noise propagation. During this century, we are witnessing an increase in seawater temperature and a decrease in ocean pH. Ocean acidification will decrease sound absorption at low frequencies (<10 kHz), enhancing long-range sound propagation. At the same time, temperature changes can modify the sound speed profile, leading to the creation or disappearance of sound ducts in which sound can propagate over large distances. The worldwide effect of climate change was explored for the winter and summer seasons using the (2018 to 2022) and (2094 to 2098, projected) atmospheric and seawater temperature, salinity, pH and wind speed as input. Using numerical modelling, we here explore the impact of climate change on underwater sound propagation. The future climate variables were taken from a Community Earth System Model v2 (CESM2) simulations forced under the concentration-driven SSP2-4.5 and SSP5-8.5 scenarios. The sound modeling results show, for future climate change scenarios, a global increase of sound speed at different depths (5, 125, 300, and 640 m) except for the North Atlantic Ocean and the Norwegian Sea, where in the upper 125 m sound speed will decrease by as much as 40 m s-1. This decrease in sound speed results in a new sub-surface duct in the upper 200 m of the water column allowing ship noise to propagate over large distances (>500 km). In the case of the Northeast Atlantic Ocean, this sub-surface duct will only be present during winter, leading to similar total mean square pressure level (SPLtot) values in the summer for both (2018 to 2022) and (2094 to 2098). We observed a strong and similar correlation for the two climate change scenarios, with an increase of the top 200 m SPLtot and a slowdown of Atlantic Meridional Overturning Circulation (AMOC) leading to an increase of SPLtot at the end of the century by 7 dB.


Assuntos
Mudança Climática , Água do Mar , Água do Mar/química , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
2.
Homo ; 73(1): 1-11, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34897365

RESUMO

Taurodontism is a continuous anatomical variation of permanent and primary posterior teeth represented by an enlargement of the pulp cavity. A high prevalence of the trait is reported in Homo neanderthalensis remains. Exploring and refining epidemiology of taurodontism in actual populations could strengthen the hypothesis of a selective advantage for a high attrition diet (as heavy tooth wear in Homo sapiens evolution changed little until recently) or favour pleiotropic or genetic drift effects to explain the high frequency of the trait in Neandertal remains. Prevalence ranges between 0.1% and 48% in the literature. The aim of the present study is to assess the prevalence of taurodontism in recent populations by means of meta-analysis, that is, is the prevalence of taurodontism lower or higher in modern human living populations, where the selective advantages of high attrition diet are still expected? From 90 potentially eligible studies, 15 were included in the meta-analysis. Only cross-sectional studies were reported, and 14,771 participants were included. The meta-analyses were performed with a random model, calculating a weighted-mean prevalence of 11.8%. Gender was found to be unrelated to the prevalence of taurodontism (OR = 0.84 (95% CI 0.67-1.05), p > 0.05). Taurodontism occurs in approximately 11.8% of the living population. This result questions the status of taurodontism as a "typical trait" in Homo neanderthalensis and allows a possible common evolutionary mechanism in Homo sapiens and Homo neanderthalensis for the trait. Further studies should include more accurate and standardized methods to assess the condition.


Assuntos
Hominidae , Homem de Neandertal , Anormalidades Dentárias , Animais , Humanos , Prevalência , Estudos Transversais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA