Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035780

RESUMO

Trials were carried out in apple orchards of Emilia-Romagna and Trentino-Alto Adige in northern Italy to investigate the effects of sprinkler irrigation on possible reduction in inoculum and subsequent disease pressure of Venturia inaequalis, the ascomycete causing apple scab. In spring, volumetric spore traps were placed above apple leaf litter containing pseudothecia with ascospores of the fungus. Pseudothecia matured more rapidly in irrigated plots, and 95% of the total number of spores trapped in a season was reached on average 164 degree days (base temperature 0°C) earlier in irrigated compared to non-irrigated plots. On average for seven location/year combinations, more than 50% of the ascospores were trapped following irrigations carried out for two hours on sunny days before a forecasted rainfall. Subsequently, a much lower number of spores were trapped on rainy days following irrigation. Field trials with scab susceptible apple cultivars were carried out in the two regions to evaluate the efficacy of sprinkler irrigation on disease. Irrigated and non-irrigated plots were either treated with different fungicide control strategies or not treated. Irrigation significantly reduced the incidence of apple scab at both sites, and the overall number of infected leaves and fruit was reduced by more than 50%. Mid-day sprinkler irrigation can significantly reduce the inoculum pressure of V. inaequalis in apple orchards. This may be a sustainable management strategy, especially in areas with extended dry periods.

2.
J Exp Bot ; 67(11): 3509-22, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27194742

RESUMO

In grapevine, flavonoids constitute one of the most abundant subgroups of secondary metabolites, influencing the quality, health value, and typicity of wines. Their synthesis in many plant species is mainly regulated at the transcriptional level by modulation of flavonoid pathway genes either by single regulators or by complexes of different regulators. In particular, bZIP and MYB factors interact synergistically in the recognition of light response units present in the promoter of some genes of the pathway, thus mediating light-dependent flavonoid biosynthesis. We recently identified VvibZIPC22, a member of clade C of the grapevine bZIP family, in a quantitative trait locus (QTL) specifically associated with kaemperol content in mature berries. Here, to validate the involvement of this candidate gene in the fine regulation of flavonol biosynthesis, we characterized its function by in vitro and in vivo experiments. A role for this gene in the control of flavonol biosynthesis was indeed confirmed by its highest expression at flowering and during UV light-mediated induction, paralleled by accumulation of the flavonol synthase 1 transcript and flavonol compounds. The overexpression of VvibZIPC22 in tobacco caused a significant increase in several flavonoids in the flower, via induction of general and specific genes of the pathway. In agreement with this evidence, VvibZIPC22 was able to activate the promoters of specific genes of the flavonoid pathway, alone or together with other factors, as revealed by transient reporter assays. These findings, supported by in silico indications, allowed us to propose VvibZIPC22 as a new regulator of flavonoid biosynthesis in grapevine.


Assuntos
Flavonóis/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Flavonóis/biossíntese , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Vitis/metabolismo
3.
BMC Genomics ; 16: 706, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26380971

RESUMO

BACKGROUND: The complex dynamics of gene regulation in plants are still far from being fully understood. Among many factors involved, alternative splicing (AS) in particular is one of the least well documented. For many years, AS has been considered of less relevant in plants, especially when compared to animals, however, since the introduction of next generation sequencing techniques the number of plant genes believed to be alternatively spliced has increased exponentially. RESULTS: Here, we performed a comprehensive high-throughput transcript sequencing of ten different grapevine cultivars, which resulted in the first high coverage atlas of the grape berry transcriptome. We also developed findAS, a software tool for the analysis of alternatively spliced junctions. We demonstrate that at least 44% of multi-exonic genes undergo AS and a large number of low abundance splice variants is present within the 131.622 splice junctions we have annotated from Pinot noir. CONCLUSIONS: Our analysis shows that ~70% of AS events have relatively low expression levels, furthermore alternative splice sites seem to be enriched near the constitutive ones in some extent showing the noise of the splicing mechanisms. However, AS seems to be extensively conserved among the 10 cultivars.


Assuntos
Processamento Alternativo/genética , Vitis/genética , Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA/genética
4.
Plant Mol Biol ; 89(1-2): 49-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26245354

RESUMO

Intrinsically disordered proteins (IDPs) are proteins that lack secondary and/or tertiary structure under physiological conditions. These proteins are very abundant in eukaryotic proteomes and play crucial roles in all molecular mechanisms underlying the response to environmental challenges. In plants, different IDPs involved in stress response have been identified and characterized. Nevertheless, a comprehensive evaluation of protein disorder in plant proteomes under abiotic or biotic stresses is not available so far. In the present work the transcriptome dataset of strawberry (Fragaria X ananassa) fruits interacting with the fungal pathogen Colletotrichum acutatum was actualized onto the woodland strawberry (Fragaria vesca) genome. The obtained cDNA sequences were translated into protein sequences, which were subsequently subjected to disorder analysis. The results, providing the first estimation of disorder abundance associated to plant infection, showed that the proteome activated in the strawberry red fruit during the active fungal propagation is remarkably depleted in disorder. On the other hand, in the resistant white fruit, no significant disorder reduction is observed in the proteins expressed in response to fungal infection. Four representative proteins, FvSMP, FvPRKRIP, FvPCD-4 and FvFAM32A-like, predicted as mainly disordered and never experimentally characterized before, were isolated, and the absence of structure was validated at the secondary and tertiary level using circular dichroism and differential scanning fluorimetry. Their quaternary structure was also established using light scattering. The results are discussed considering the role of protein disorder in plant defense.


Assuntos
Colletotrichum/fisiologia , Fragaria/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Intrinsicamente Desordenadas/fisiologia , Doenças das Plantas/microbiologia , Fragaria/genética , Fragaria/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia
5.
J Exp Bot ; 66(15): 4441-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071529

RESUMO

Flavonols are a ubiquitous class of flavonoids that accumulate preferentially in flowers and mature berries. Besides their photo-protective function, they play a fundamental role during winemaking, stabilizing the colour by co-pigmentation with anthocyanins and contributing to organoleptic characteristics. Although the general flavonol pathway has been genetically and biochemically elucidated, the genetic control of flavonol content and composition at harvest is still not clear. To this purpose, the grapes of 170 segregating F1 individuals from a 'Syrah'×'Pinot Noir' population were evaluated at the mature stage for the content of six flavonol aglycons in four seasons. Metabolic data in combination with genetic data enabled the identification of 16 mQTLs (metabolic quantitative trait loci). For the first time, major genetic control by the linkage group 2 (LG 2)/MYBA region on flavonol variation, in particular of tri-hydroxylated flavonols, is demonstrated. Moreover, seven regions specifically associated with the fine control of flavonol biosynthesis are identified. Gene expression profiling of two groups of individuals significantly divergent for their skin flavonol content identified a large set of differentially modulated transcripts. Among these, the transcripts coding for MYB and bZIP transcription factors, methyltranferases, and glucosyltranferases specific for flavonols, proteins, and factors belonging to the UV-B signalling pathway and co-localizing with the QTL regions are proposed as candidate genes for the fine regulation of flavonol content and composition in mature grapes.


Assuntos
Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Vitis/genética , Flavonóis/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Análise de Sequência de DNA , Vitis/metabolismo
6.
Microbiome ; 7(1): 140, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699155

RESUMO

BACKGROUND: Despite their importance as a reservoir of biodiversity, the factors shaping soil microbial communities and the extent by which these are impacted by cultivation are still poorly understood. Using 16S rRNA gene and ITS sequencing, we characterized the soil microbiota of vineyards and of neighboring permanent grassland soils in the Italian province of Trentino, and correlated their structure and composition to location, chemical properties of the soil, and land management. RESULTS: Bacterial communities had a core of conserved taxa accounting for more than 60% of the reads of each sample, that was influenced both by geography and cultivation. The core fungal microbiota was much smaller and dominated by geography alone. Cultivation altered the structure and composition of the soil microbiota both for bacteria and fungi, with site-specific effects on their diversity. The diversity of bacterial and fungal communities was generally inversely correlated across locations. We identified several taxa that were impacted by the chemical properties and texture of the soil. CONCLUSIONS: Our results highlight the different responses of bacterial and fungal communities to environmental factors and highlight the need to characterize both components of the soil microbiota to fully understand the factors that drive their variability.


Assuntos
Bactérias/classificação , Biodiversidade , Fazendas , Fungos/classificação , Microbiota/genética , Microbiologia do Solo , Itália , Filogenia , Filogeografia
7.
Front Plant Sci ; 8: 2244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387072

RESUMO

Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1), the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system "microvine" and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral) VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat) VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA