Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2217885120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252956

RESUMO

Retinitis pigmentosa (RP) is an ocular disease characterized by the loss of night vision, followed by the loss of daylight vision. Daylight vision is initiated in the retina by cone photoreceptors, which are gradually lost in RP, often as bystanders in a disease process that initiates in their neighboring rod photoreceptors. Using physiological assays, we investigated the timing of cone electroretinogram (ERG) decline in RP mouse models. A correlation between the time of loss of the cone ERG and the loss of rods was found. To investigate a potential role of the visual chromophore supply in this loss, mouse mutants with alterations in the regeneration of the retinal chromophore, 11-cis retinal, were examined. Reducing chromophore supply via mutations in Rlbp1 or Rpe65 resulted in greater cone function and survival in a RP mouse model. Conversely, overexpression of Rpe65 and Lrat, genes that can drive the regeneration of the chromophore, led to greater cone degeneration. These data suggest that abnormally high chromophore supply to cones upon the loss of rods is toxic to cones, and that a potential therapy in at least some forms of RP is to slow the turnover and/or reduce the level of visual chromophore in the retina.


Assuntos
Visão de Cores , Retinose Pigmentar , Camundongos , Animais , Retina , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Retinose Pigmentar/genética , Modelos Animais de Doenças
2.
PLoS Genet ; 18(6): e1009798, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675330

RESUMO

Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans.


Assuntos
Proteínas do Tecido Nervoso , Displasia Retiniana , Fatores de Troca de Nucleotídeo Guanina Rho , Animais , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Displasia Retiniana/genética , Displasia Retiniana/metabolismo , Displasia Retiniana/patologia , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
3.
Adv Exp Med Biol ; 1415: 27-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440010

RESUMO

Age-related macular degeneration (AMD) is the leading cause of blindness in the global aging population. Familial aggregation and genome-wide association (GWA) studies have identified gene variants associated with AMD, implying a strong genetic contribution to AMD development. Two loci, on human Chr 1q31 and 10q26, respectively, represent the most influential of all genetic factors. While the role of CFH at Chr 1q31 is well established, uncertainty remains about the genes ARMS2 and HTRA1, at the Chr 10q26 locus. Since both genes are in strong linkage disequilibrium, assigning individual gene effects is difficult. In this chapter, we review current literature about ARMS2 and HTRA1 and their relevance to AMD risk. Future studies will be necessary to unravel the mechanisms by which they contribute to AMD.


Assuntos
Degeneração Macular , Proteínas , Humanos , Idoso , Proteínas/genética , Serina Endopeptidases/genética , Estudo de Associação Genômica Ampla , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Fator H do Complemento/genética , Genótipo
4.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163536

RESUMO

Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação , Receptores de Adiponectina/genética , Degeneração Retiniana/patologia , Animais , Cruzamento , Modelos Animais de Doenças , Epistasia Genética , Proteínas do Olho/metabolismo , Homozigoto , Proteínas de Membrana/metabolismo , Camundongos , Oftalmoscopia , Fenótipo , Receptores de Adiponectina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216333

RESUMO

Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.


Assuntos
Mutação/genética , Splicing de RNA/genética , Retina/patologia , Descolamento Retiniano/genética , Epitélio Pigmentado da Retina/patologia , Simportadores de Sódio-Bicarbonato/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Descolamento Retiniano/patologia , Tomografia de Coerência Óptica/métodos
6.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233305

RESUMO

Congenital disorders of glycosylation (CDG) are a heterogenous group of primarily autosomal recessive mendelian diseases caused by disruptions in the synthesis of lipid-linked oligosaccharides and their transfer to proteins. CDGs usually affect multiple organ systems and vary in presentation, even within families. There is currently no cure, and treatment is aimed at ameliorating symptoms and improving quality of life. Here, we describe a chemically induced mouse mutant, tvrm76, with early-onset photoreceptor degeneration. The recessive mutation was mapped to Chromosome 9 and associated with a missense mutation in the Dpagt1 gene encoding UDP-N-acetyl-D-glucosamine:dolichyl-phosphate N-acetyl-D-glucosaminephosphotransferase (EC 2.7.8.15). The mutation is predicted to cause a substitution of aspartic acid with glycine at residue 166 of DPAGT1. This represents the first viable animal model of a Dpagt1 mutation and a novel phenotype for a CDG. The increased expression of Ddit3, and elevated levels of HSPA5 (BiP) suggest the presence of early-onset endoplasmic reticulum (ER) stress. These changes were associated with the induction of photoreceptor apoptosis in tvrm76 retinas. Mutations in human DPAGT1 cause myasthenic syndrome-13 and severe forms of a congenital disorder of glycosylation Type Ij. In contrast, Dpagt1tvrm76 homozygous mice present with congenital photoreceptor degeneration without overt muscle or muscular junction involvement. Our results suggest the possibility of DPAGT1 mutations in human patients that present primarily with retinitis pigmentosa, with little or no muscle disease. Variants in DPAGT1 should be considered when evaluating cases of non-syndromic retinal degeneration.


Assuntos
Defeitos Congênitos da Glicosilação , Doenças Retinianas , Acetilglucosamina , Animais , Ácido Aspártico/genética , Defeitos Congênitos da Glicosilação/genética , Glicina/genética , Humanos , Camundongos , Debilidade Muscular , Mutação , Mutação de Sentido Incorreto , Fosfatos , Qualidade de Vida , Difosfato de Uridina
7.
Hum Mol Genet ; 24(24): 6958-74, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26405179

RESUMO

Human gene mutations have revealed that a significant number of ADAMTS (a disintegrin-like and metalloproteinase (reprolysin type) with thrombospondin type 1 motifs) proteins are necessary for normal ocular development and eye function. Mutations in human ADAMTSL4, encoding an ADAMTS-like protein which has been implicated in fibrillin microfibril biogenesis, cause ectopia lentis (EL) and EL et pupillae. Here, we report the first ADAMTSL4 mouse model, tvrm267, bearing a nonsense mutation in Adamtsl4. Homozygous Adamtsl4(tvrm267) mice recapitulate the EL phenotype observed in humans, and our analysis strongly suggests that ADAMTSL4 is required for stable anchorage of zonule fibers to the lens capsule. Unexpectedly, homozygous Adamtsl4(tvrm267) mice exhibit focal retinal pigment epithelium (RPE) defects primarily in the inferior eye. RPE dedifferentiation was indicated by reduced pigmentation, altered cellular morphology and a reduction in RPE-specific transcripts. Finally, as with a subset of patients with ADAMTSL4 mutations, increased axial length, relative to age-matched controls, was observed and was associated with the severity of the RPE phenotype. In summary, the Adamtsl4(tvrm267) model provides a valuable tool to further elucidate the molecular basis of zonule formation, the pathophysiology of EL and ADAMTSL4 function in the maintenance of the RPE.


Assuntos
Proteínas ADAM/genética , Ectopia do Cristalino/genética , Pró-Colágeno N-Endopeptidase/genética , Distúrbios Pupilares/genética , Epitélio Pigmentado da Retina/citologia , Proteínas ADAM/fisiologia , Proteína ADAMTS4 , Animais , Comprimento Axial do Olho , Diferenciação Celular , Códon sem Sentido , Colágeno/genética , Modelos Animais de Doenças , Ectopia do Cristalino/patologia , Colágenos Associados a Fibrilas , Regulação da Expressão Gênica , Homozigoto , Humanos , Cristalino/citologia , Cristalino/patologia , Camundongos , Camundongos Mutantes , Pró-Colágeno N-Endopeptidase/fisiologia , Pupila , Distúrbios Pupilares/patologia , Epitélio Pigmentado da Retina/patologia
8.
Am J Pathol ; 186(7): 1925-1938, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207593

RESUMO

The nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) enzyme is essential for regenerating the nuclear pool of NAD(+) in all nucleated cells in the body, and mounting evidence also suggests that it has a separate role in neuroprotection. Recently, mutations in the NMNAT1 gene were associated with Leber congenital amaurosis, a severe retinal degenerative disease that causes blindness during infancy. Availability of a reliable mammalian model of NMNAT1-Leber congenital amaurosis would assist in determining the mechanisms through which disruptions in NMNAT1 lead to retinal cell degeneration and would provide a resource for testing treatment options. To this end, we identified two separate N-ethyl-N-nitrosourea-generated mouse lines that harbor either a p.V9M or a p.D243G mutation. Both mouse models recapitulate key aspects of the human disease and confirm the pathogenicity of mutant NMNAT1. Homozygous Nmnat1 mutant mice develop a rapidly progressing chorioretinal disease that begins with photoreceptor degeneration and includes attenuation of the retinal vasculature, optic atrophy, and retinal pigment epithelium loss. Retinal function deteriorates in both mouse lines, and, in the more rapidly progressing homozygous Nmnat1(V9M) mutant mice, the electroretinogram becomes undetectable and the pupillary light response weakens. These mouse models offer an opportunity for investigating the cellular mechanisms underlying disease pathogenesis, evaluating potential therapies for NMNAT1-Leber congenital amaurosis, and conducting in situ studies on NMNAT1 function and NAD(+) metabolism.


Assuntos
Modelos Animais de Doenças , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Animais , Genótipo , Humanos , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase
9.
J Neuroradiol ; 43(3): 195-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26704672

RESUMO

PURPOSE: Alström syndrome (AS) is a rare monogenic ciliopathy characterized by cone-code dystrophy, leading to early blindness, and obesity. Early endocrinological dysfunctions, especially growth hormone deficiency and hypogonadism, are detected in about half of AS patients. This MRI study investigates the presence of pituitary gland abnormalities in a large cohort of AS patients. METHODS: Pituitary morphological changes (gland flattening with partial or total empty sella) were evaluated on midsagittal high-resolution T1-weighted images of 32 AS patients (mean-age 23.2±9.4 years; range: 6-45, 15 females) and 21 unrelated healthy subjects (mean age 23.2±11.2 years; range: 6-43; 10 females). RESULTS: Among AS patients, 11/32 (34%) had total empty sella and 6/32 (19%) partial empty sella, while 3/21 (14%) of controls had partial empty sella and none presented with total empty sella (P<0.005). AS patients harboring a total or partial empty sella did not differ from those with normal pituitary gland for gender (P=0.98), BMI (P=0.10) or visual impairment (P=0.21), while the presence of empty sella was associated with an older age (P=0.007) being especially frequent above the age of 30. CONCLUSIONS: Total or partial empty sella appears commonly during the course of AS. Pituitary gland flattening might represent the morphological underpinning of subtle endocrinologic dysfunctions and raises the need to further investigate the pituitary function in this rare ciliopathy.


Assuntos
Síndrome de Alstrom/diagnóstico por imagem , Síndrome de Alstrom/patologia , Hipófise/diagnóstico por imagem , Hipófise/patologia , Adolescente , Adulto , Criança , Síndrome da Sela Vazia/diagnóstico por imagem , Síndrome da Sela Vazia/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
10.
Hum Mutat ; 36(7): 660-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25846608

RESUMO

Alström Syndrome (ALMS), a recessive, monogenic ciliopathy caused by mutations in ALMS1, is typically characterized by multisystem involvement including early cone-rod retinal dystrophy and blindness, hearing loss, childhood obesity, type 2 diabetes mellitus, cardiomyopathy, fibrosis, and multiple organ failure. The precise function of ALMS1 remains elusive, but roles in endosomal and ciliary transport and cell cycle regulation have been shown. The aim of our study was to further define the spectrum of ALMS1 mutations in patients with clinical features of ALMS. Mutational analysis in a world-wide cohort of 204 families identified 109 novel mutations, extending the number of known ALMS1 mutations to 239 and highlighting the allelic heterogeneity of this disorder. This study represents the most comprehensive mutation analysis in patients with ALMS, identifying the largest number of novel mutations in a single study worldwide. Here, we also provide an overview of all ALMS1 mutations identified to date.


Assuntos
Síndrome de Alstrom/genética , Mutação , Proteínas/genética , Adolescente , Adulto , Proteínas de Ciclo Celular , Criança , Éxons , Humanos , Linhagem , Adulto Jovem
11.
J Hum Genet ; 60(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25296579

RESUMO

Alström syndrome (ALMS) is an autosomal recessive disease characterized by multiple organ involvement, including neurosensory vision and hearing loss, childhood obesity, diabetes mellitus, cardiomyopathy, hypogonadism, and pulmonary, hepatic, renal failure and systemic fibrosis. Alström Syndrome is caused by mutations in ALMS1, and ALMS1 protein is thought to have a role in microtubule organization, intraflagellar transport, endosome recycling and cell cycle regulation. Here, we report extensive phenotypic and genetic analysis of a large cohort of Turkish patients with ALMS. We evaluated 61 Turkish patients, including 11 previously reported, for both clinical spectrum and mutations in ALMS1. To reveal the molecular diagnosis of the patients, different approaches were used in combination, a cohort of patients were screened by the gene array to detect the common mutations in ALMS1 gene, then in patients having any of the common ALMS1 mutations were subjected to direct DNA sequencing or next-generation sequencing for the screening of mutations in all coding regions of the gene. In total, 20 distinct disease-causing nucleotide changes in ALMS1 have been identified, eight of which are novel, thereby increasing the reported ALMS1 mutations by 6% (8/120). Five disease-causing variants were identified in more than one kindred, but most of the alleles were unique to each single patient and identified only once (16/20). So far, 16 mutations identified were specific to the Turkish population, and four have also been reported in other ethnicities. In addition, 49 variants of uncertain pathogenicity were noted, and four of these were very rare and probably or likely deleterious according to in silico mutation prediction analyses. ALMS has a relatively high incidence in Turkey and the present study shows that the ALMS1 mutations are largely heterogeneous; thus, these data from a particular population may provide a unique source for the identification of additional mutations underlying Alström Syndrome and contribute to genotype-phenotype correlation studies.


Assuntos
Síndrome de Alstrom/genética , Consanguinidade , Estudos de Associação Genética , Adolescente , Síndrome de Alstrom/patologia , Proteínas de Ciclo Celular , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mutação , Linhagem , Isoformas de Proteínas/genética , Proteínas/genética , Turquia
12.
Mol Cell Proteomics ; 11(6): M111.011767, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22199231

RESUMO

RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology.


Assuntos
Mitose , RNA Polimerase II/metabolismo , Cromatografia em Gel , Doença , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imunoprecipitação , Interfase , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteoma/genética , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Interferência de RNA , RNA Polimerase II/isolamento & purificação , Ribonucleoproteínas/genética , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação , Proteínas Ribossômicas/metabolismo , Transcrição Gênica
13.
Pediatr Cardiol ; 34(2): 455-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22447358

RESUMO

Alström syndrome (ALMS) is a rare autosomal recessive disorder caused by mutations in the ALMS1 gene. We report two brothers, 3 and 4 years of age and diagnosed with ALMS, who initially presented in infancy with severe dilated cardiomyopathy during febrile respiratory infection. The disease course in the two siblings was marked by significant intrafamilial variability. Although cardiomyopathy in the older sibling has mainly resolved thus allowing for the discontinuation of medical therapy, heart function in the younger sibling continues to deteriorate despite maximal drug support with furosemide, carvedilol, captopril, and aldospirone. Genetic analysis revealed homozygous mutations, c.8008C>T (R2670X), in ALMS1 resulting in premature protein truncation. This report further emphasizes the exceptional intrafamilial variability of ALMS, mainly during the natural course of cardiac disease.


Assuntos
Síndrome de Alstrom/diagnóstico , Cardiomiopatia Dilatada/diagnóstico , Códon sem Sentido , DNA/genética , Proteínas/genética , Irmãos , Síndrome de Alstrom/complicações , Síndrome de Alstrom/genética , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/genética , Proteínas de Ciclo Celular , Pré-Escolar , Análise Mutacional de DNA , Ecocardiografia , Homozigoto , Humanos , Masculino
14.
Nat Genet ; 31(1): 74-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11941369

RESUMO

Alström syndrome is a homogeneous autosomal recessive disorder that is characterized by childhood obesity associated with hyperinsulinemia, chronic hyperglycemia and neurosensory deficits. The gene involved in Alström syndrome probably interacts with genetic modifiers, as subsets of affected individuals present with additional features such as dilated cardiomyopathy, hepatic dysfunction, hypothyroidism, male hypogonadism, short stature and mild to moderate developmental delay, and with secondary complications normally associated with type 2 diabetes, such as hyperlipidemia and atherosclerosis. Our detection of an uncharacterized transcript, KIAA0328, led us to identify the gene ALMS1, which contains sequence variations, including four frameshift mutations and two nonsense mutations, that segregate with Alström syndrome in six unrelated families. ALMS1 is ubiquitously expressed at low levels and does not share significant sequence homology with other genes reported so far. The identification of ALMS1 provides an entry point into a new pathway leading toward the understanding of both Alström syndrome and the common diseases that characterize it.


Assuntos
Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/genética , Mutação , Degeneração Neural/genética , Sistemas Neurossecretores/patologia , Sistemas Neurossecretores/fisiopatologia , Obesidade/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular , Criança , DNA/genética , Análise Mutacional de DNA , Feminino , Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos , Síndrome
15.
Hum Genet ; 131(3): 407-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21877133

RESUMO

Alström syndrome is a clinically complex disorder characterized by childhood retinal degeneration leading to blindness, sensorineural hearing loss, obesity, type 2 diabetes mellitus, cardiomyopathy, systemic fibrosis, and pulmonary, hepatic, and renal failure. Alström syndrome is caused by recessively inherited mutations in the ALMS1 gene, which codes for a putative ciliary protein. Alström syndrome is characterized by extensive allelic heterogeneity, however, founder effects have been observed in some populations. To date, more than 100 causative ALMS1 mutations have been identified, mostly frameshift and non-sense alterations resulting in termination signals in ALMS1. Here, we report a complex Turkish kindred in which sequence analysis uncovered an insertion of a novel 333 basepair Alu Ya5 SINE retrotransposon in the ALMS1 coding sequence, a previously unrecognized mechanism underlying the mutations causing Alström syndrome. It is extraordinarily rare to encounter the insertion of an Alu retrotransposon in the coding sequence of a gene. The high frequency of the mutant ALMS1 allele in this isolated population suggests that this recent retrotransposition event spreads quickly, and may be used as a model to study the population dynamics of deleterious alleles in isolated communities.


Assuntos
Síndrome de Alstrom/genética , Elementos Alu/genética , Mutagênese Insercional , Retroelementos , Cromossomos Humanos Par 13 , Feminino , Humanos , Masculino , Linhagem
16.
Front Mol Neurosci ; 15: 1080136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698779

RESUMO

During routine screening of mouse strains and stocks by the Eye Mutant Resource at The Jackson Laboratory for genetic mouse models of human ocular disorders, we identified cpfl9, a mouse model with cone photoreceptor function loss. The mice exhibited an early-onset phenotype that was easily recognized by the absence of a cone-mediated b-wave electroretinography response and by a reduction in rod-mediated photoresponses at four weeks of age. By genetic mapping and high-throughput sequencing of a whole exome capture library of cpfl9, a homozygous 25 bp deletion within exon 11 of the Gucy2e gene was identified, which is predicted to result in a frame shift leading to premature termination. The corresponding protein in human, retinal guanylate cyclase 1 (GUCY2D), plays an important role in rod and cone photoreceptor cell function. Loss-of-function mutations in human GUCY2D cause LCA1, one of the most common forms of Leber congenital amaurosis, which results in blindness at birth or in early childhood. The early loss of cone and reduced rod photoreceptor cell function in the cpfl9 mutant is accompanied by a later, progressive loss of cone and rod photoreceptor cells, which may be relevant to understanding disease pathology in a subset of LCA1 patients and in individuals with cone-rod dystrophy caused by recessive GUCY2D variants. cpfl9 mice will be useful for studying the role of Gucy2e in the retina.

18.
J Am Soc Nephrol ; 20(4): 753-64, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19211713

RESUMO

Meckel-Gruber syndrome type 3 (MKS3; OMIM 607361) is a severe autosomal recessive disorder characterized by bilateral polycystic kidney disease. Other malformations associated with MKS3 include cystic changes in the liver, polydactyly, and brain abnormalities (occipital encephalocele, hydrocephalus, and Dandy Walker-type cerebellar anomalies). The disorder is hypothesized to be caused by defects in primary cilia. In humans, the underlying mutated gene, TMEM67, encodes transmembrane protein 67, also called meckelin (OMIM 609884), which is an integral protein of the renal epithelial cell and membrane of the primary cilium. Here, we describe a spontaneous deletion of the mouse ortholog, Tmem67, which results in polycystic kidney disease and death by 3 wk after birth. Hydrocephalus also occurs in some mutants. We verified the mutated gene by transgenic rescue and characterized the phenotype with microcomputed tomography, histology, scanning electron microscopy, and immunohistochemistry. This mutant provides a mouse model for MKS3 and adds to the growing set of mammalian models essential for studying the role of the primary cilium in kidney function.


Assuntos
Proteínas de Membrana/genética , Doenças Renais Policísticas/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Animais , Modelos Animais de Doenças , Deleção de Genes , Humanos , Hidrocefalia/genética , Hidrocefalia/fisiopatologia , Rim/patologia , Camundongos , Camundongos Mutantes , Mutação , Doenças Renais Policísticas/epidemiologia , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/fisiopatologia , Estados Unidos/epidemiologia
19.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290105

RESUMO

Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.


Assuntos
Modelos Animais de Doenças , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Animais , Humanos , Camundongos , Degeneração Retiniana/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
20.
Am J Med Genet A ; 149A(4): 666-8, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19283853

RESUMO

Alström syndrome (AS; OMIM 203800) is an autosomal recessive disorder characterized by cone-rod dystrophy, dilated cardiomyopathy, sensorineural hearing impairment, developmental delay, and most case had both childhood-onset obesity and hyperinsulinemia. Currently, the pathogenesis of this disease is not clear. Here we report on an 18-month-old boy with Alström syndrome. He had obesity but with normal insulin and glucose levels. Molecular analysis of the ALMS1 gene revealed a 19 base pair homozygous deletion 11116_11134del in exon 16. His body mass index decreased from 25.0 to 20.7 after calorie restriction for 9 months, and his insulin and glucose levels remained normal. Finding in this case suggests that hyperinsulinemia is a secondary event in Alström syndrome, and early-commenced treatment prevents hyperinsulinemia.


Assuntos
Restrição Calórica , Cardiomiopatia Dilatada/genética , Hiperinsulinismo/prevenção & controle , Obesidade/dietoterapia , Obesidade/genética , Retinose Pigmentar/genética , Glicemia/metabolismo , Índice de Massa Corporal , Proteínas de Ciclo Celular , Homozigoto , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/genética , Lactente , Insulina/sangue , Masculino , Obesidade/patologia , Proteínas/genética , Deleção de Sequência , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA