RESUMO
A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence-promoter spacing, secondary structure potential of the mRNA, and start codon identity-that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5' leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore.
Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Fator sigma/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Sequências Repetidas Invertidas , Modelos Genéticos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator sigma/biossíntese , Transdução de Sinais , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Transcrição GênicaRESUMO
The YbeY endoribonuclease is one of the best-conserved proteins across the kingdoms of life. In the present study, we demonstrated that YbeY in Brucella abortus is linked to a variety of important activities, including proper cellular morphology, mRNA transcript levels, and virulence. Deletion of ybeY in B. abortus led to a small-colony phenotype when the bacteria were grown on agar medium, as well as to significant aberrations in the morphology of the bacterial cell as evidenced by electron microscopy. Additionally, compared to the parental strain, the ΔybeY strain was significantly attenuated in both macrophage and mouse models of infection. The ΔybeY strain also showed increased sensitivities to several in vitro-applied stressors, including bile acid, hydrogen peroxide, SDS, and paraquat. Transcriptomic analysis revealed that a multitude of mRNA transcripts are dysregulated in the ΔybeY strain, and many of the identified mRNAs encode proteins involved in metabolism, nutrient transport, transcriptional regulation, and flagellum synthesis. We subsequently constructed gene deletion strains of the most highly dysregulated systems, and several of the YbeY-linked gene deletion strains exhibited defects in the ability of the bacteria to survive and replicate in primary murine macrophages. Taken together, these data establish a clear role for YbeY in the biology and virulence of Brucella; moreover, this work further illuminates the highly varied roles of this widely conserved endoribonuclease in bacteria.IMPORTANCEBrucella spp. are highly efficient bacterial pathogens of animals and humans, causing significant morbidity and economic loss worldwide, and relapse of disease often occurs following antibiotic treatment of human brucellosis. As such, novel therapeutic strategies to combat Brucella infections are needed. Ribonucleases in the brucellae are understudied, and these enzymes represent elements that may be potential targets for future treatment approaches. The present work demonstrates the importance of the YbeY endoribonuclease for cellular morphology, efficient control of mRNA levels, and virulence in B. abortus Overall, the results of this study advance our understanding of the critical roles of YbeY in the pathogenesis of the intracellular brucellae and expand our understanding of this highly conserved RNase.
Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/enzimologia , Brucella abortus/patogenicidade , Brucelose/microbiologia , Endorribonucleases/metabolismo , Animais , Proteínas de Bactérias/genética , Brucella abortus/genética , Brucella abortus/crescimento & desenvolvimento , Endorribonucleases/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , VirulênciaRESUMO
We recently discovered RnpA as a promising new drug discovery target for methicillin-resistant S. aureus (MRSA). RnpA is an essential protein that is thought to perform two required cellular processes. As part of the RNA degrasome Rnpa mediates RNA degradation. In combination with rnpB it forms RNase P haloenzymes which are required for tRNA maturation. A high throughput screen identified RNPA2000 as an inhibitor of both RnpA-associated activities that displayed antibacterial activity against clinically relevant strains of S. aureus, including MRSA. Structure-activity studies aimed at improving potency and replacing the potentially metabotoxic furan moiety led to the identification of a number of more potent analogs. Many of these new analogs possessed overt cellular toxicity that precluded their use as antibiotics but two derivatives, including compound 5o, displayed an impressive synergy with mupirocin, an antibiotic used for decolonizing MSRA whose effectiveness has recently been jeopardized by bacterial resistance. Based on our results, compounds like 5o may ultimately find use in resensitizing mupirocin-resistant bacteria to mupirocin.
Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Ribonuclease P/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ribonuclease P/metabolismo , Relação Estrutura-AtividadeRESUMO
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells. Recently, the description of human induced pluripotent stem cells (hIPSCs) has allowed the field of disease modeling to become far more accessible and physiologically relevant, as pluripotent cells can be generated from patients of any genetic background. Disease models derived from hIPSCs that manifest cellular disease phenotypes have been established to study several monogenic diseases; furthermore, hIPSCs can be used for phenotype-based drug screens to investigate complex diseases for which the underlying genetic mechanism is unknown. As a result, the use of stem cells as research tools has seen an unprecedented growth within the last decade as researchers look for in vitro disease models which closely mimic in vivo responses in humans. Here, we discuss the beginnings of hPSCs, starting with isolation of human embryonic stem cells, moving into the development and optimization of hIPSC technology, and ending with the application of hIPSCs towards disease modeling and drug screening applications, with specific examples highlighting the modeling of inherited metabolic disorders of the liver. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Fígado/fisiologia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Modelos BiológicosRESUMO
In the midst of the current antimicrobial pipeline void, alternative approaches are needed to reduce the incidence of infection and decrease reliance on last-resort antibiotics for the therapeutic intervention of bacterial pathogens. In that regard, mupirocin ointment-based decolonization and wound maintenance practices have proven effective in reducing Staphylococcus aureus transmission and mitigating invasive disease. However, the emergence of mupirocin-resistant strains has compromised the agent's efficacy, necessitating new strategies for the prevention of staphylococcal infections. Herein, we set out to improve the performance of mupirocin-based ointments. A screen of a Food and Drug Administration (FDA)-approved drug library revealed that the antibiotic neomycin sulfate potentiates the antimicrobial activity of mupirocin, whereas other library antibiotics did not. Preliminary mechanism of action studies indicate that neomycin's potentiating activity may be mediated by inhibition of the organism's RNase P function, an enzyme that is believed to participate in the tRNA processing pathway immediately upstream of the primary target of mupirocin. The improved antimicrobial activity of neomycin and mupirocin was maintained in ointment formulations and reduced S. aureus bacterial burden in murine models of nasal colonization and wound site infections. Combination therapy improved upon the effects of either agent alone and was effective in the treatment of contemporary methicillin-susceptible, methicillin-resistant, and high-level mupirocin-resistant S. aureus strains. From these perspectives, combination mupirocin-and-neomycin ointments appear to be superior to that of mupirocin alone and warrant further development.
Assuntos
Antibacterianos/uso terapêutico , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mupirocina/uso terapêutico , Neomicina/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Administração Intranasal , Animais , Portador Sadio/tratamento farmacológico , Portador Sadio/prevenção & controle , Combinação de Medicamentos , Farmacorresistência Bacteriana , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Cavidade Nasal/microbiologia , Pomadas/uso terapêutico , RNA Ribossômico 16S/genética , Ribonuclease P/antagonistas & inibidores , Infecções Cutâneas Estafilocócicas/prevenção & controle , Estados UnidosRESUMO
Roberts Syndrome (RBS) and Cornelia de Lange Syndrome (CdLS) are severe developmental maladies that present with nearly an identical suite of multi-spectrum birth defects. Not surprisingly, RBS and CdLS arise from mutations within a single pathway--here involving cohesion. Sister chromatid tethering reactions that comprise cohesion are required for high fidelity chromosome segregation, but cohesin tethers also regulate gene transcription, promote DNA repair, and impact DNA replication. Currently, RBS is thought to arise from elevated levels of apoptosis, mitotic failure, and limited progenitor cell proliferation, while CdLS is thought to arise, instead, from transcription dysregulation. Here, we review new information that implicates RBS gene mutations in altered transcription profiles. We propose that cohesin-dependent transcription dysregulation may extend to other developmental maladies; the diagnoses of which are complicated through multi-functional proteins that manifest a sliding scale of diverse and severe phenotypes. We further review evidence that cohesinopathies are more common than currently posited.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Anormalidades Craniofaciais/genética , Síndrome de Cornélia de Lange/genética , Ectromelia/genética , Hipertelorismo/genética , Apoptose , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Anormalidades Craniofaciais/patologia , Síndrome de Cornélia de Lange/patologia , Ectromelia/patologia , Humanos , Hipertelorismo/patologia , Redes e Vias Metabólicas/genética , Mutação , CoesinasRESUMO
IMPORTANCE: Acinetobacter baumannii is a significant cause of infections in the healthcare setting. More recently, A. baumannii has been a leading cause of secondary bacterial pneumonia in patients infected with SARS-CoV-2 and the overall frequency of A. baumannii infection increased 78% during the COVID-19 pandemic. A. baumannii can exist in virulent or avirulent subpopulations and this interconversion is mediated by the expression of a family of TetR-type transcriptional regulators. In this study, we demonstrate that Rho is a key regulatory component in the expression of these TetR regulators. Overall, this study is the first to address a role for Rho in A. baumannii and provides additional evidence for the role of Rho in regulating diversity in bacterial subpopulations.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Virulência , Acinetobacter baumannii/genética , Pandemias , Infecções por Acinetobacter/microbiologiaRESUMO
The ADC (AmpC) ß-lactamase is universally present in the Acinetobacter baumannii chromosome, suggesting it may have a yet-to-be-identified cellular function. Using peptidoglycan composition analysis, we show that overexpressing the ADC-7 ß-lactamase in A. baumannii drives changes consistent with altered l,d-transpeptidase activity. Based on this, we tested whether cells overexpressing ADC-7 would exhibit new vulnerabilities. As proof of principle, a screen of transposon insertions revealed that an insertion in the distal 3' end of canB, encoding carbonic anhydrase, resulted in a significant loss of viability when the adc-7 gene was overexpressed. A canB deletion mutant exhibited a more pronounced loss of viability than the transposon insertion, and this became amplified when cells overexpressed ADC-7. Interestingly, overexpression of the OXA-23 or TEM-1 ß-lactamases also led to a pronounced loss of viability in cells with reduced carbonic anhydrase activity. In addition, we demonstrate that reduced CanB activity led to increased sensitivity to peptidoglycan synthesis inhibitors and to the carbonic anhydrase inhibitor ethoxzolamide. Furthermore, this strain exhibited a synergistic interaction with the peptidoglycan inhibitor fosfomycin and ethoxzolamide. Our results highlight the impact of ADC-7 overexpression on cell physiology and reveal that the essential carbonic anhydrase CanB may represent a novel target for antimicrobial agents that would exhibit increased potency against ß-lactamase-overexpressing A. baumannii. IMPORTANCE Acinetobacter baumannii has become resistant to all classes of antibiotics, with ß-lactam resistance responsible for the majority of treatment failures. New classes of antimicrobials are needed to treat this high-priority pathogen. This study had uncovered a new genetic vulnerability in ß-lactamase-expressing A. baumannii, where reduced carbonic anhydrase activity becomes lethal. Inhibitors of carbonic anhydrase could represent a new method for treating A. baumannii infections.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Etoxzolamida , Peptidoglicano/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fenômenos Fisiológicos Celulares , Testes de Sensibilidade MicrobianaRESUMO
Acinetobacter baumannii is a Gram-negative organism listed as an urgent threat pathogen by the World Health Organization (WHO). Carbapenem-resistant A. baumannii (CRAB), especially, present therapeutic challenges due to complex mechanisms of resistance to ß-lactams. One of the most important mechanisms is the production of ß-lactamase enzymes capable of hydrolyzing ß-lactam antibiotics. Co-expression of multiple classes of ß-lactamases is present in CRAB; therefore, the design and synthesis of "cross-class" inhibitors is an important strategy to preserve the efficacy of currently available antibiotics. To identify new, nonclassical ß-lactamase inhibitors, we previously identified a sulfonamidomethaneboronic acid CR167 active against Acinetobacter-derived class C ß-lactamases (ADC-7). The compound demonstrated affinity for ADC-7 with a Ki = 160 nM and proved to be able to decrease MIC values of ceftazidime and cefotaxime in different bacterial strains. Herein, we describe the activity of CR167 against other ß-lactamases in A. baumannii: the cefepime-hydrolysing class C extended-spectrum ß-lactamase (ESAC) ADC-33 and the carbapenem-hydrolyzing OXA-24/40 (class D). These investigations demonstrate CR167 as a valuable cross-class (C and D) inhibitor, and the paper describes our attempts to further improve its activity. Five chiral analogues of CR167 were rationally designed and synthesized. The structures of OXA-24/40 and ADC-33 in complex with CR167 and select chiral analogues were obtained. The structure activity relationships (SARs) are highlighted, offering insights into the main determinants for cross-class C/D inhibitors and impetus for novel drug design.
RESUMO
ß-Lactamase expression is the major mechanism of resistance to penicillins, cephalosporins, and carbapenems in the multidrug-resistant (MDR) bacterium Acinetobacter baumannii. In fact, stable high-level expression of at least one ß-lactamase has been rapidly increasing and reported to occur in up to 98.5% of modern A. baumannii isolates recovered in the clinic. Moreover, the OXA-51 ß-lactamase is universally present in the A. baumannii chromosome, suggesting it may have a cellular function beyond antibiotic resistance. However, the consequences associated with OXA ß-lactamase overexpression on A. baumannii physiology are not well understood. Using peptidoglycan composition analysis, we show that overexpressing the OXA-23 ß-lactamase in A. baumannii drives significant collateral changes with alterations consistent with increased amidase activity. Consequently, we predicted that these changes create new cellular vulnerabilities. As proof of principle, a small screen of random transposon insertions revealed three genes, where mutations resulted in a greater than 19-fold loss of viability when OXA-23 was overexpressed. The identified genes remained conditionally essential even when a catalytically inactive OXA-23 ß-lactamase was overexpressed. In addition, we demonstrated a synergistic lethal relationship between OXA-23 overexpression and a CRISPR interference (CRISPRi) knockdown of the essential peptidoglycan synthesis enzyme MurA. Last, OXA-23 overexpression sensitized cells to two inhibitors of peptidoglycan synthesis, d-cycloserine and fosfomycin. Our results highlight the impact of OXA-23 hyperexpression on peptidoglycan integrity and reveal new genetic vulnerabilities, which may represent novel targets for antimicrobial agents specific to MDR A. baumannii and other OXA ß-lactamase-overexpressing Enterobacteriaceae, while having no impact on the normal flora. IMPORTANCE Acinetobacter baumannii has become a serious pathogen in both hospital and community settings. The ß-lactam class of antibiotics is a primary treatment option for A. baumannii infections, and expression of ß-lactamases is the most frequent mechanism of resistance in this bacterium. New approaches to treating multidrug-resistant A. baumannii strains are needed. In this study, we demonstrate that overexpressing the OXA-23 ß-lactamase leads to significant collateral changes, where peptidoglycan structure is altered. We have identified genes that become selectively essential in OXA-23-expressing strains and confirmed the relationship between altered peptidoglycan and OXA-23 expression by demonstrating that OXA-23 overexpression sensitizes cells to genetic and chemical inhibition of peptidoglycan synthesis. This work paves the way for the identification of new antimicrobial targets, where inhibitors would selectively kill ß-lactamase-expressing strains.
Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Mutação , Peptidoglicano/biossíntese , beta-Lactamases/metabolismoRESUMO
Multidrug resistant Acinetobacter baumannii is a serious healthcare threat. In fact, the Center for Disease Control recently reported that carbapenem-resistant A. baumannii is responsible for more than 8,500 infections, 700 deaths, and $281 million in healthcare costs annually in the United States with few, if any, treatment options available, leading to its designation as a pathogen of urgent concern and a priority for novel antimicrobial development. It is hypothesized that biofilms are, at least in part, responsible for the high prevalence of A. baumannii nosocomial and recurrent infections because they frequently contaminate hospital surfaces and patient indwelling devices; therefore, there has been a recent push for mechanistic understanding of biofilm formation, maturation and dispersal. However, most research has focused on A. baumannii pneumonia and bloodstream infections, despite a recent retrospective study showing that 17.1% of A. baumannii isolates compiled from clinical studies over the last two decades were obtained from urinary samples. This highlights that A. baumannii is an underappreciated uropathogen. The following minireview will examine our current understanding of A. baumannii biofilm formation and how this influences urinary tract colonization and pathogenesis.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos/farmacologia , Biofilmes , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , VirulênciaRESUMO
Staphylococcus aureus RnpA is thought to be a unique dual functional antimicrobial target that is required for two essential cellular processes, precursor tRNA processing and messenger RNA degradation. Herein, we used a previously described whole cell-based mupirocin synergy assay to screen members of a 53,000 compound small molecule diversity library and simultaneously enrich for agents with cellular RnpA inhibitory activity. A medicinal chemistry-based campaign was launched to generate a preliminary structure activity relationship and guide early optimization of two novel chemical classes of RnpA inhibitors identified, phenylcarbamoyl cyclic thiophene and piperidinecarboxamide. Representatives of each chemical class displayed potent anti-staphylococcal activity, limited the protein's in vitro ptRNA processing and mRNA degradation activities, and exhibited favorable therapeutic indexes. The most potent piperidinecarboxamide RnpA inhibitor, JC2, displayed inhibition of cellular RnpA mRNA turnover, RnpA-depletion strain hypersusceptibility, and exhibited antimicrobial efficacy in a wax worm model of S. aureus infection. Taken together, these results establish that the whole cell screening assay used is amenable to identifying small molecule RnpA inhibitors within large chemical libraries and that the chemical classes identified here may represent progenitors of new classes of antimicrobials that target RnpA.
RESUMO
Gastrointestinal diseases are becoming increasingly prevalent in developed countries. Immortalized cells and animal models have delivered important but limited insight into the mechanisms that initiate and propagate these diseases. Human-specific models of intestinal development and disease are desperately needed that can recapitulate structure and function of the gut in vitro Advances in pluripotent stem cells and primary tissue culture techniques have made it possible to culture intestinal epithelial cells in three dimensions that self-assemble to form 'intestinal organoids'. These organoids allow for new, human-specific models that can be used to gain insight into gastrointestinal disease and potentially deliver new therapies to treat them. Here we review current in vitro models of intestinal development and disease, considering where improvements could be made and potential future applications in the fields of developmental modelling, drug/toxicity testing and therapeutic uses.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Assuntos
Células Epiteliais/fisiologia , Intestinos/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Células-Tronco Pluripotentes/fisiologia , Técnicas de Cultura de Células/métodos , Humanos , Técnicas In Vitro , Enteropatias/fisiopatologia , Intestinos/fisiopatologia , Organoides/fisiopatologiaRESUMO
Duplicated ribosomal protein (RP) genes in the Drosophila melanogaster eRpL22 family encode structurally-divergent and differentially-expressed rRNA-binding RPs. eRpL22 is expressed ubiquitously and eRpL22-like expression is tissue-restricted with highest levels in the adult male germline. We explored paralogue functional equivalence using the GAL4-UAS system for paralogue knockdown or overexpression and a conditional eRpL22-like knockout in a heat- shock flippase/FRT line. Ubiquitous eRpL22 knockdown with Actin-GAL4 resulted in embryonic lethality, confirming eRpL22 essentiality. eRpL22-like knockdown (60%) was insufficient to cause lethality; yet, conditional eRpL22-like knockout at one hour following egg deposition caused lethality within each developmental stage. Therefore, each paralogue is essential. Variation in timing of heat-shock-induced eRpL22-like knockout highlighted early embryogenesis as the critical period where eRpL22-like expression (not compensated for by eRpL22) is required for normal development of several organ systems, including testis development and subsequent sperm production. To determine if eRpL22-like can substitute for eRpL22, we used Actin-GAL4 for ubiquitous eRpL22 knockdown and eRpL22-like-FLAG (or FLAG-eRpL22: control) overexpression. Emergence of adults demonstrated that ubiquitous eRpL22-like-FLAG or FLAG-eRpL22 expression eliminates embryonic lethality resulting from eRpL22 depletion. Adults rescued by eRpL22-like-FLAG (but not by FLAG-eRpL22) overexpression had reduced fertility and longevity. We conclude that eRpL22 paralogue roles are not completely interchangeable and include functionally-diverse roles in development and spermatogenesis. Testis-specific paralogue knockdown revealed molecular phenotypes, including increases in eRpL22 protein and mRNA levels following eRpL22-like depletion, implicating a negative crosstalk mechanism regulating eRpL22 expression. Paralogue depletion unmasked mechanisms, yet to be defined that impact paralogue co-expression within germ cells.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Feminino , Fertilidade , Longevidade , Masculino , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genéticaRESUMO
Staphylococcus aureus ribonuclease-P-protein subunit (RnpA) is a promising antimicrobial target that is a key protein component for two essential cellular processes, RNA degradation and transfer-RNA (tRNA) maturation. The first crystal structure of RnpA from the pathogenic bacterial species, S. aureus, is reported at 2.0â Å resolution. The structure presented maintains key similarities with previously reported RnpA structures from bacteria and archaea, including the highly conserved RNR-box region and aromatic residues in the precursor-tRNA 5'-leader-binding domain. This structure will be instrumental in the pursuit of structure-based designed inhibitors targeting RnpA-mediated RNA processing as a novel therapeutic approach for treating S. aureus infections.
Assuntos
Proteínas de Bactérias/química , RNA Bacteriano/química , RNA de Transferência/química , Ribonuclease P/química , Staphylococcus aureus/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease P/genética , Ribonuclease P/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/enzimologia , Especificidade por SubstratoRESUMO
Although the analysis of genetic interactions and networks is a powerful approach to understanding biology, it has not been applied widely to the pathogenic yeast Candida albicans Here, we describe the use of both screening and directed genetic interaction studies based on complex haploinsufficiency to probe the function of the R: egulation of A: ce2 and M: orphogenesis (RAM) pathway in C. albicans A library of 5200 Tn7-mutagenized derivatives of a parental strain heterozygous at CBK1, the key kinase in the RAM pathway, was screened for alterations in serum-induced filamentation. Following confirmation of phenotypes and identification of insertion sites by sequencing, a set of 36 unique double heterozygous strains showing complex haploinsufficiency was obtained. In addition to a large set of genes regulated by the RAM transcription factor Ace2, genes related to cell wall biosynthesis, cell cycle, polarity, oxidative stress, and nitrogen utilization were identified. Follow-up analysis led to the first demonstration that the RAM pathway is required for oxidative stress tolerance in a manner related to the two-component-regulated kinase Chk1 and revealed a potential direct connection between the RAM pathway and the essential Mps1 spindle pole-related kinase. In addition, genetic interactions with CDC42-related genes MSB1, a putative scaffold protein, and RGD3, a putative Rho GTPase-activating protein (GAP) were identified. We also provide evidence that Rgd3 is a GAP for Cdc42 and show that its localization and phosphorylation are dependent on Cbk1.
Assuntos
Candida albicans/genética , Quinase 1 do Ponto de Checagem/genética , Haploinsuficiência/genética , Peptidil Dipeptidase A/genética , Enzima de Conversão de Angiotensina 2 , Candida albicans/patogenicidade , Divisão Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/genéticaRESUMO
Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional laboratory screening media.
Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Acinetobacter baumannii/metabolismo , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Pulmão/microbiologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Rifaximina , Tetraciclina/farmacologiaRESUMO
The apoptosis-associated Par-4 protein has been implicated in cancers of the prostate, colon, and kidney, and in Alzheimer's and Huntington's diseases, among other neurodegenerative disorders. Previously, we have shown that a peptide from the Par-4 C-terminus, which is responsible for Par-4 self-association as well as interaction with all currently identified effector molecules, is natively unfolded at neutral pH, but forms a tightly associated coiled coil at acidic pH and low temperature. Here, we have alternately mutated the two acidic residues predicted to participate in repulsive electrostatic interactions at the coiled coil interhelical interface. Analysis of circular dichroism spectra reveals that a dramatic alteration of the folding/unfolding equilibrium of this peptide can be effected through directed-point mutagenesis, confirming that the two acidic residues are indeed key to the pH-dependent folding behavior of the Par-4 coiled coil, and further suggesting that alleviation of charge repulsion through exposure to either a low pH microenvironment or an electrostatically complementary environment may be necessary for efficient folding of the Par-4 C-terminus.
Assuntos
Apoptose , Proteínas de Transporte/química , Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intracelular , Mutação Puntual/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/metabolismo , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Temperatura , TermodinâmicaRESUMO
Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure-activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Terfenadina/química , Antibacterianos/síntese química , Técnicas de Química Sintética , DNA Girase/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antagonistas não Sedativos dos Receptores H1 da Histamina/química , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Terfenadina/análogos & derivados , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologiaRESUMO
The study of bacteriophages infecting the model organism Bacillus subtilis has provided an abundance of general knowledge and a platform for advances in biotechnology. Here, we announce the annotated genome of CampHawk, a B. subtilis phage. CampHawk was found to be an SPO1-like phage with similar gene content and arrangement.