Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(7): 3001-3016, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36442505

RESUMO

Plasmids can be transferred between cells by conjugation, thereby driving bacterial evolution by horizontal gene transfer. Yet, we ignore the molecular mechanisms of transfer for many plasmids because they lack all protein-coding genes required for conjugation. We solved this conundrum by identifying hundreds of plasmids and chromosomes with conjugative origins of transfer in Escherichia coli and Staphylococcus aureus. These plasmids (pOriT) hijack the relaxases of conjugative or mobilizable elements, but not both. The functional dependencies between pOriT and other plasmids explain their co-occurrence: pOriT are abundant in cells with many plasmids, whereas conjugative plasmids are the most common in the others. We systematically characterized plasmid mobility in relation to conjugation and alternative mechanisms of transfer and can now propose a putative mechanism of transfer for ∼90% of them. In most cases, plasmid mobility seems to involve conjugation. Interestingly, the mechanisms of mobility are important determinants of plasmid-encoded accessory traits, since pOriTs have the highest densities of antimicrobial resistance genes, whereas plasmids lacking putative mechanisms of transfer have the lowest. We illuminate the evolutionary relationships between plasmids and suggest that many pOriT may have arisen by gene deletions in other types of plasmids. These results suggest that most plasmids can be transferred by conjugation.


Some plasmids encode complex cellular structures to transfer between bacteria by conjugation, which facilitates the spread of adaptive trains between cells. Yet, half of all plasmids lack the protein-coding genes required for conjugation. Their mobility has remained a mystery that we now contribute to solve by proposing a mechanism of transfer for 9 out of 10 plasmids. We identified the only non-coding sequence required for conjugation, the origin of transfer (oriT), in hundreds of plasmids of Escherichia coli and Staphylococcus aureus. These plasmids might have originated from larger ones and have the highest density of antibiotic resistance genes. Their horizontal transfer depends on complex functional dependencies with other plasmids, which explains their co-existence in bacterial cells.


Assuntos
Conjugação Genética , Escherichia coli , Transferência Genética Horizontal , Staphylococcus aureus , Cromossomos , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Origem de Replicação
2.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37788575

RESUMO

Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.


Assuntos
Escherichia coli , Quinolonas , Plasmídeos , Escherichia coli/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética , Quinolonas/farmacologia , Mutação , Transferência Genética Horizontal
3.
PLoS Pathog ; 18(4): e1010425, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35381053

RESUMO

Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever.


Assuntos
Quimiotaxia , Salmonella paratyphi A , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Flagelos/genética , Flagelos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Filogenia , Salmonella paratyphi A/metabolismo , Salmonella typhimurium
4.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35639760

RESUMO

Conjugation drives the horizontal transfer of adaptive traits across prokaryotes. One-fourth of the plasmids encode the functions necessary to conjugate autonomously, the others being eventually mobilizable by conjugation. To understand the evolution of plasmid mobility, we studied plasmid size, gene repertoires, and conjugation-related genes. Plasmid gene repertoires were found to vary rapidly in relation to the evolutionary rate of relaxases, for example, most pairs of plasmids with 95% identical relaxases have fewer than 50% of homologs. Among 249 recent transitions of mobility type, we observed a clear excess of plasmids losing the capacity to conjugate. These transitions are associated with even greater changes in gene repertoires, possibly mediated by transposable elements, including pseudogenization of the conjugation locus, exchange of replicases reducing the problem of incompatibility, and extensive loss of other genes. At the microevolutionary scale of plasmid taxonomy, transitions of mobility type sometimes result in the creation of novel taxonomic units. Interestingly, most transitions from conjugative to mobilizable plasmids seem to be lost in the long term. This suggests a source-sink dynamic, where conjugative plasmids generate nonconjugative plasmids that tend to be poorly adapted and are frequently lost. Still, in some cases, these relaxases seem to have evolved to become efficient at plasmid mobilization in trans, possibly by hijacking multiple conjugative systems. This resulted in specialized relaxases of mobilizable plasmids. In conclusion, the evolution of plasmid mobility is frequent, shapes the patterns of gene flow in bacteria, the dynamics of gene repertoires, and the ecology of plasmids.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Bactérias/genética , Bactérias/metabolismo , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal , Plasmídeos/genética , Células Procarióticas
5.
NAR Genom Bioinform ; 4(4): lqac079, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285285

RESUMO

Mobile Genetic Elements (MGEs) are integrated in bacterial genomes and key elements that drive prokaryote genome evolution. Among them are Integrative and Conjugative Elements (ICEs) and Integrative Mobilizable Elements (IMEs) which are important for bacterial fitness since they frequently carry genes participating in important bacterial adaptation phenotypes such as antibiotic resistance, virulence or specialized metabolic pathways. Although ICEs and IMEs are widespread, they are as yet almost never annotated in public bacterial genomes. To address the need of dedicated strategies for the annotation of these elements, we developed ICEscreen, a tool that introduces two new features to detect ICEs and IMEs in Firmicute genomes. First, ICEscreen uses an efficient strategy to detect Signature Proteins of ICEs and IMEs based on a database dedicated to Firmicutes and composed of manually curated proteins and Hidden Markov Models (HMM) profiles. Second, ICEscreen includes a new original algorithm that detects composite structures of ICEs and IMEs that are frequent in genomes of Firmicutes but are currently not resolved by any other tool. We benchmarked ICEscreen on experimentally supported elements and on a public dataset of 246 manually annotated elements including the genomes of 40 Firmicutes and demonstrate its efficiency to detect ICEs and IMEs.

6.
Pathogens ; 9(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881744

RESUMO

Streptococcus suis is a zoonotic pathogen suspected to be a reservoir of antimicrobial resistance (AMR) genes. The genomes of 214 strains of 27 serotypes were screened for AMR genes and chromosomal Mobile Genetic Elements (MGEs), in particular Integrative Conjugative Elements (ICEs) and Integrative Mobilizable Elements (IMEs). The functionality of two ICEs that host IMEs carrying AMR genes was investigated by excision tests and conjugation experiments. In silico search revealed 416 ICE-related and 457 IME-related elements. These MGEs exhibit an impressive diversity and plasticity with tandem accretions, integration of ICEs or IMEs inside ICEs and recombination between the elements. All of the detected 393 AMR genes are carried by MGEs. As previously described, ICEs are major vehicles of AMR genes in S. suis. Tn5252-related ICEs also appear to carry bacteriocin clusters. Furthermore, whereas the association of IME-AMR genes has never been described in S. suis, we found that most AMR genes are actually carried by IMEs. The autonomous transfer of an ICE to another bacterial species (Streptococcus thermophilus)-leading to the cis-mobilization of an IME carrying tet(O)-was obtained. These results show that besides ICEs, IMEs likely play a major role in the dissemination of AMR genes in S. suis.

7.
Genes (Basel) ; 8(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165361

RESUMO

Conjugation is a key mechanism of bacterial evolution that involves mobile genetic elements. Recent findings indicated that the main actors of conjugative transfer are not the well-known conjugative or mobilizable plasmids but are the integrated elements. This paper reviews current knowledge on "integrative and mobilizable elements" (IMEs) that have recently been shown to be highly diverse and highly widespread but are still rarely described. IMEs encode their own excision and integration and use the conjugation machinery of unrelated co-resident conjugative element for their own transfer. Recent studies revealed a much more complex and much more diverse lifecycle than initially thought. Besides their main transmission as integrated elements, IMEs probably use plasmid-like strategies to ensure their maintenance after excision. Their interaction with conjugative elements reveals not only harmless hitchhikers but also hunters that use conjugative elements as target for their integration or harmful parasites that subvert the conjugative apparatus of incoming elements to invade cells that harbor them. IMEs carry genes conferring various functions, such as resistance to antibiotics, that can enhance the fitness of their hosts and that contribute to their maintenance in bacterial populations. Taken as a whole, IMEs are probably major contributors to bacterial evolution.

8.
Front Microbiol ; 8: 443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373865

RESUMO

Recent analyses of bacterial genomes have shown that integrated elements that transfer by conjugation play an essential role in horizontal gene transfer. Among these elements, the integrative and mobilizable elements (IMEs) are known to encode their own excision and integration machinery, and to carry all the sequences or genes necessary to hijack the mating pore of a conjugative element for their own transfer. However, knowledge of their prevalence and diversity is still severely lacking. In this work, an extensive analysis of 124 genomes from 27 species of Streptococcus reveals 144 IMEs. These IMEs encode either tyrosine or serine integrases. The identification of IME boundaries shows that 141 are specifically integrated in 17 target sites. The IME-encoded relaxases belong to nine superfamilies, among which four are previously unknown in any mobilizable or conjugative element. A total of 118 IMEs are found to encode a non-canonical relaxase related to rolling circle replication initiators (belonging to the four novel families or to MobT). Surprisingly, among these, 83 encode a TcpA protein (i.e., a non-canonical coupling protein (CP) that is more closely related to FtsK than VirD4) that was not previously known to be encoded by mobilizable elements. Phylogenetic analyses reveal not only many integration/excision module replacements but also losses, acquisitions or replacements of TcpA genes between IMEs. This glimpse into the still poorly known world of IMEs reveals that mobilizable elements have a very high prevalence. Their diversity is even greater than expected, with most encoding a CP and/or a non-canonical relaxase.

9.
Front Microbiol ; 6: 1483, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779141

RESUMO

Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA