Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Econ Entomol ; 117(1): 34-42, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38206826

RESUMO

Viruses are one of many serious threats to honey bee (Apis mellifera L.) health. There are many transmission routes for honey bee viruses, and there is potential for wax comb to act as a reservoir for transmission of viruses. Some work has been done on treating viruses on wax, focusing on irradiation as a potential treatment. However, irradiation is not universally available or economically viable for beekeepers in many regions. With increased colony deaths over winter beekeepers potentially risk further loss from reusing contaminated equipment from dead colonies. Here we explored the use of storage time and temperature on the reduction of waxborne virus levels from winter loss colony wax over 30 days and at -20, 5, and 20 °C. Furthermore, because irradiation has previously worked against waxborne viruses, we performed a dosage experiment with electron-beam irradiation. Winter loss wax was again used, and exposed to 10, 25, 35, and 45 kGy irradiation, including a nonirradiated transport control. Storage time decreased abundance of black queen cell virus and deformed wing virus at times equal or greater than 30 days but temperatures had no significant effect on virus levels. All irradiation doses decreased virus abundance and prevalence, yet only 35 and 45 kGy did so at a greater rate than the effect of transport alone.


Assuntos
Himenópteros , Vírus de RNA , Vírus , Abelhas , Animais , Temperatura , Elétrons
2.
Ecol Evol ; 7(18): 7243-7253, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944014

RESUMO

European honey bees Apis mellifera are important commercial pollinators that have suffered greater than normal overwintering losses since 2007 in North America and Europe. Contributing factors likely include a combination of parasites, pesticides, and poor nutrition. We examined diet diversity, diet nutritional quality, and pesticides in honey bee-collected pollen from commercial colonies in the Canadian Maritime Provinces in spring and summer 2011. We sampled pollen collected by honey bees at colonies in four site types: apple orchards, blueberry fields, cranberry bogs, and fallow fields. Proportion of honey bee-collected pollen from crop versus noncrop flowers was high in apple, very low in blueberry, and low in cranberry sites. Pollen nutritional value tended to be relatively good from apple and cranberry sites and poor from blueberry and fallow sites. Floral surveys ranked, from highest to lowest in diversity, fallow, cranberry, apple, and blueberry sites. Pesticide diversity in honey bee-collected pollen was high from apple and blueberry sites and low from cranberry and fallow sites. Four different neonicotinoid pesticides were detected, but neither these nor any other pesticides were at or above LD50 levels. Pollen hazard quotients were highest in apple and blueberry sites and lowest in fallow sites. Pollen hazard quotients were also negatively correlated with the number of flower taxa detected in surveys. Results reveal differences among site types in diet diversity, diet quality, and pesticide exposure that are informative for improving honey bee and land agro-ecosystem management.

3.
PLoS One ; 9(6): e98599, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955834

RESUMO

Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.


Assuntos
Abelhas/microbiologia , Abelhas/parasitologia , Nosema/fisiologia , Parasitos/fisiologia , Varroidae/fisiologia , Animais , Abelhas/virologia , Mel , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA