Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Hum Mol Genet ; 32(3): 473-488, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018820

RESUMO

Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.


Assuntos
Cinesinas , Animais , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Mamíferos/metabolismo , Hipotonia Muscular , Neurônios/metabolismo , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769099

RESUMO

Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Citoesqueleto/metabolismo , Idioma
3.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175696

RESUMO

Induced pluripotent stem cells (iPSCs) have been established as a reliable in vitro disease model system and represent a particularly informative tool when animal models are not available or do not recapitulate the human pathophenotype. The recognized limit in using this technology is linked to some degree of variability in the behavior of the individual patient-derived clones. The development of CRISPR/Cas9-based gene editing solves this drawback by obtaining isogenic iPSCs in which the genetic lesion is corrected, allowing a straightforward comparison with the parental patient-derived iPSC lines. Here, we report the generation of a footprint-free isogenic cell line of patient-derived TBCD-mutated iPSCs edited using the CRISPR/Cas9 and piggyBac technologies. The corrected iPSC line had no genetic footprint after the removal of the selection cassette and maintained its "stemness". The correction of the disease-causing TBCD missense substitution restored proper protein levels of the chaperone and mitotic spindle organization, as well as reduced cellular death, which were used as read-outs of the TBCD KO-related endophenotype. The generated line represents an informative in vitro model to understand the impact of pathogenic TBCD mutations on nervous system development and physiology.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Sistemas CRISPR-Cas/genética , Endofenótipos , Diferenciação Celular/genética , Edição de Genes , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Brain ; 144(10): 3020-3035, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-33964137

RESUMO

Leukodystrophies are a heterogeneous group of rare inherited disorders that mostly involve the white matter of the CNS. These conditions are characterized by primary glial cell and myelin sheath pathology of variable aetiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in five large consanguineous nuclear families allowed us to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report these two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the underlying cause of this novel form of leukodystrophy with ataxia and sensorineural deafness that includes fibrotic cardiomyopathy and hepatopathy as associated features in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as the RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology; mutations in primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.


Assuntos
Alelos , Ataxia/genética , Surdez/genética , Laminopatias/genética , Mutação/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Sequência de Aminoácidos , Animais , Ataxia/diagnóstico , Células COS , Criança , Chlorocebus aethiops , Surdez/diagnóstico , Drosophila , Feminino , Células HEK293 , Humanos , Laminopatias/diagnóstico , Masculino , Linhagem , Adulto Jovem
5.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408865

RESUMO

PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo/patologia , Caderinas/genética , Análise por Conglomerados , Epilepsia/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos , Organoides/patologia , Protocaderinas , Peixe-Zebra
6.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948465

RESUMO

To date, gene therapy has employed viral vectors to deliver therapeutic genes. However, recent progress in molecular and cell biology has revolutionized the field of stem cells and gene therapy. A few years ago, clinical trials started using stem cell replacement therapy, and the induced pluripotent stem cells (iPSCs) technology combined with CRISPR-Cas9 gene editing has launched a new era in gene therapy for the treatment of neurological disorders. Here, we summarize the latest findings in this research field and discuss their clinical applications, emphasizing the relevance of recent studies in the development of innovative stem cell and gene editing therapeutic approaches. Even though tumorigenicity and immunogenicity are existing hurdles, we report how recent progress has tackled them, making engineered stem cell transplantation therapy a realistic option.


Assuntos
Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças do Sistema Nervoso/terapia , Transplante de Células-Tronco/métodos , Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto , Edição de Genes , Humanos , Doenças do Sistema Nervoso/genética
7.
J Neurochem ; 153(2): 264-275, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31811660

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss of function mutations in the Survival Motor Neuron 1 (SMN1) gene and reduced expression of the SMN protein, leading to spinal motor neuron death, muscle weakness and atrophy. Although humans harbour the highly homologous SMN2 gene, its defective splicing regulation yields a truncated and unstable SMN protein. The first therapy for SMA was recently approved by the Food and Drug Administration and consists of an antisense oligonucleotide (Nusinersen) rendering SMN2 functional and thus improving patients' motor activity and quality of life. Nevertheless, not all patients equally respond to this therapy and the long-term tolerability and safety of Nusinersen are still unknown. Herein, in vivo splicing assays indicated that the HDAC inhibitor LBH589 is particularly efficient in rescuing the SMN2 splicing defect in SMA fibroblasts and SMA type-I mice-derived neural stem cells. Western blot analyses showed that LBH589 also causes a significant increase in SMN protein expression in SMA cells. Moreover chromatin immunoprecipitation analyses revealed that LBH589 treatment induces widespread H4 acetylation of the entire SMN2 locus and selectively favors the inclusion of the disease-linked exon 7 in SMN2 mature mRNA. The combined treatment of SMA cells with sub-optimal doses of LBH589 and of an antisense oligonucleotide that mimic Nusinersen (ASO_ISSN1) elicits additive effects on SMN2 splicing and SMN protein expression. These findings suggest that HDAC inhibitors can potentiate the activity of Nusinersen and support the notion that 'SMN-plus' combinatorial therapeutic approaches might represent an enhanced opportunity in the scenario of SMA therapy.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos/farmacologia , Panobinostat/farmacologia , Splicing de RNA/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/biossíntese , Animais , Quimioterapia Combinada , Feminino , Fibroblastos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
8.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036493

RESUMO

Mitochondrial dysfunction is a key element in the pathogenesis of neurodegenerative disorders, such as riboflavin transporter deficiency (RTD). This is a rare, childhood-onset disease characterized by motoneuron degeneration and caused by mutations in SLC52A2 and SLC52A3, encoding riboflavin (RF) transporters (RFVT2 and RFVT3, respectively), resulting in muscle weakness, ponto-bulbar paralysis and sensorineural deafness. Based on previous findings, which document the contribution of oxidative stress in RTD pathogenesis, we tested possible beneficial effects of several antioxidants (Vitamin C, Idebenone, Coenzyme Q10 and EPI-743, either alone or in combination with RF) on the morphology and function of neurons derived from induced pluripotent stem cells (iPSCs) from two RTD patients. To identify possible improvement of the neuronal morphotype, neurite length was measured by confocal microscopy after ß-III tubulin immunofluorescent staining. Neuronal function was evaluated by determining superoxide anion generation by MitoSOX assay and intracellular calcium (Ca2+) levels, using the Fluo-4 probe. Among the antioxidants tested, EPI-743 restored the redox status, improved neurite length and ameliorated intracellular calcium influx into RTD motoneurons. In conclusion, we suggest that antioxidant supplementation may have a role in RTD treatment.


Assuntos
Antioxidantes/farmacologia , Proteínas de Membrana Transportadoras/deficiência , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Riboflavina/metabolismo , Animais , Biomarcadores , Paralisia Bulbar Progressiva , Cálcio/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Perda Auditiva Neurossensorial , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Neurônios Motores/citologia , Oxirredução , Fenótipo
9.
Am J Hum Genet ; 99(4): 974-983, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666369

RESUMO

Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.


Assuntos
Encefalopatias/complicações , Encefalopatias/genética , Chaperonas Moleculares/genética , Atrofia Muscular Espinal/complicações , Atrofia Muscular Espinal/genética , Mutação/genética , Adolescente , Idade de Início , Animais , Criança , Feminino , Fibroblastos , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Itália , Masculino , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/metabolismo , Nocodazol/farmacologia , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/metabolismo , Adulto Jovem
10.
Hum Mol Genet ; 25(19): 4288-4301, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516386

RESUMO

To elucidate the pathogenesis of axonopathy in Friedreich's Ataxia (FRDA), a neurodegenerative disease characterized by axonal retraction, we analyzed the microtubule (MT) dynamics in an in vitro frataxin-silenced neuronal model (shFxn). A typical feature of MTs is their "dynamic instability", in which they undergo phases of growth (polymerization) and shrinkage (depolymerization). MTs play a fundamental role in the physiology of neurons and every perturbation of their dynamicity is highly detrimental for neuronal functions. The aim of this study is to determine whether MTs are S-glutathionylated in shFxn and if the glutathionylation triggers MT dysfunction. We hypothesize that oxidative stress, determined by high GSSG levels, induces axonal retraction by interfering with MT dynamics. We propose a mechanism of the axonopathy in FRDA where GSSG overload and MT de-polymerization are strictly interconnected. Indeed, using a frataxin-silenced neuronal model we show a significant reduction of neurites extension, a shift of tubulin toward the unpolymerized fraction and a consistent increase of glutathione bound to the cytoskeleton. The live cell imaging approach further reveals a significant decrease in MT growth lifetime due to frataxin silencing, which is consistent with the MT destabilization. The in vitro antioxidant treatments trigger the axonal re-growth and the increase in stable MTs in shFxn, thus contributing to identify new neuronal targets of oxidation in this disease and providing a novel approach for antioxidant therapies.


Assuntos
Axônios/metabolismo , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Neurônios Motores/metabolismo , Neuritos/metabolismo , Animais , Antioxidantes/administração & dosagem , Axônios/efeitos dos fármacos , Axônios/patologia , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/metabolismo , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/patologia , Inativação Gênica , Dissulfeto de Glutationa/metabolismo , Humanos , Proteínas de Ligação ao Ferro/antagonistas & inibidores , Camundongos , Microtúbulos/genética , Microtúbulos/patologia , Neurônios Motores/patologia , Neuritos/efeitos dos fármacos , Neuritos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Frataxina
11.
Mol Cell Neurosci ; 77: 113-124, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27756615

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases, in particular those affecting the nervous system, which has been difficult to study for its lack of accessibility. In this emerging and promising field, recent iPSCs studies are mostly used as "proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized. A recent number of studies point to the functional similarities between in vitro neurogenesis and in vivo neuronal development, suggesting that similar morphogenetic and patterning events direct neuronal differentiation. In this context, neuronal adhesion, cytoskeletal organization and cell metabolism emerge as an integrated and unexplored processes of human neurogenesis, mediated by the lack of data due to the difficult accessibility of the human neural tissue. These observations raise the necessity to understand which are the players controlling cytoskeletal reorganization and remodeling. In particular, we investigated human in vitro neurogenesis using iPSCs of healthy subjects to unveil the underpinnings of the cytoskeletal dynamics with the aim to shed light on the physiologic events controlling the development and the functionality of neuronal cells. We validate the iPSCs system to better understand the development of the human nervous system in order to set the bases for the future understanding of pathologies including developmental disorders (i.e. intellectual disability), epilepsy but also neurodegenerative disorders (i.e. Friedreich's Ataxia). We investigate the changes of the cytoskeletal components during the 30days of neuronal differentiation and we demonstrate that human neuronal differentiation requires a (time-dependent) reorganization of actin filaments, intermediate filaments and microtubules; and that immature neurons present a finely regulated localization of Glu-, Tyr- and Acet-TUBULINS. This study advances our understanding on cytoskeletal dynamics with the hope to pave the way for future therapies that could be potentially able to target cytoskeletal based neurodevelopmental and neurodegenerative diseases.


Assuntos
Citoesqueleto de Actina/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Tubulina (Proteína)/metabolismo
12.
Int J Mol Sci ; 18(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112121

RESUMO

Premature aging disorders including Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome, are a group of rare monogenic diseases leading to reduced lifespan of the patients. Importantly, these disorders mimic several features of physiological aging. Despite the interest on the study of these diseases, the underlying biological mechanisms remain unknown and no treatment is available. Recent studies on HGPS (due to mutations of the LMNA gene encoding for the nucleoskeletal proteins lamin A/C) have reported disruptions in cellular and molecular mechanisms modulating genomic stability and stem cell populations, thus giving the nuclear lamina a relevant function in nuclear organization, epigenetic regulation and in the maintenance of the stem cell pool. In this context, modeling premature aging with induced pluripotent stem cells (iPSCs) offers the possibility to study these disorders during self-renewal and differentiation into relevant cell types. iPSCs generated by cellular reprogramming from adult somatic cells allows researchers to understand pathophysiological mechanisms and enables the performance of drug screenings. Moreover, the recent development of precision genome editing offers the possibility to study the complex mechanisms underlying senescence and the possibility to correct disease phenotypes, paving the way for future therapeutic interventions.


Assuntos
Senilidade Prematura/metabolismo , Senilidade Prematura/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Sistemas CRISPR-Cas , Senescência Celular/genética , Senescência Celular/fisiologia , Epigênese Genética/genética , Humanos , Laminas/genética , Laminas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Progéria/metabolismo , Progéria/terapia
13.
Epilepsia ; 57(3): e51-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26765483

RESUMO

PCDH19 gene mutations have been recently associated with an epileptic syndrome characterized by focal and generalized seizures. The PCDH19 gene (Xq22.1) has an unusual X-linked inheritance with a selective involvement for female subjects. A cellular interference mechanism has been hypothesized and male patients can manifest epilepsy only in the case of a mosaicism. So far about 100 female patients, and only one symptomatic male have been described. Using targeted next generation sequencing (NGS) approach we found a PCDH19 point mutation in two male patients with a clinical picture suggestive of PCDH19-related epilepsy. The system allowed us to verify that the two c.1352 C>T; p.(Pro451Leu) and c.918C>G; p.(Tyr306*) variants occurred in mosaic status. Mutations were confirmed by Sanger sequencing and quantified by real-time polymerase chain reaction (PCR). Up to now, the traditional molecular screening for PCDH19-related epilepsy has been targeted to all females with early onset epilepsy with or without cognitive impairment. Male patients were generally excluded. We describe for the first time two mosaic PCDH19 point mutations in two male patients with a clinical picture suggestive of PCDH19-related epilepsy. This finding opens new opportunities for the molecular diagnoses in patients with a peculiar type of epilepsy that remains undiagnosed in male patients.


Assuntos
Caderinas/genética , Epilepsia/diagnóstico , Epilepsia/genética , Mutação Puntual/genética , Pré-Escolar , Feminino , Humanos , Masculino , Protocaderinas
14.
Biochem Biophys Res Commun ; 459(2): 179-183, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25511694

RESUMO

Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin-myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK.


Assuntos
Histona Desacetilases/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Quinases Associadas a rho/metabolismo , Transporte Ativo do Núcleo Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Proteínas Ativadoras de GTPase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteínas Nucleares/genética , Fosforilação , Transdução de Sinais , Ativação Transcricional
15.
Cell Mol Life Sci ; 71(9): 1623-39, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24252976

RESUMO

Neurogenesis is the developmental process regulating cell proliferation of neural stem cells, determining their differentiation into glial and neuronal cells, and orchestrating their organization into finely regulated functional networks. Can this complex process be recapitulated in vitro using induced pluripotent stem cell (iPSC) technology? Can neurodevelopmental and neurodegenerative diseases be modeled using iPSCs? What is the potential of iPSC technology in neurobiology? What are the recent advances in the field of neurological diseases? Since the applications of iPSCs in neurobiology are based on the capacity to regulate in vitro differentiation of human iPSCs into different neuronal subtypes and glial cells, and the possibility of obtaining iPSC-derived neurons and glial cells is based on and hindered by our poor understanding of human embryonic development, we reviewed current knowledge on in vitro neural differentiation from a developmental and cellular biology perspective. We highlight the importance to further advance our understanding on the mechanisms controlling in vivo neurogenesis in order to efficiently guide neurogenesis in vitro for cell modeling and therapeutical applications of iPSCs technology.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Neurogênese , Animais , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/citologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/cirurgia , Transplante de Células-Tronco
16.
Genesis ; 52(6): 515-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753133

RESUMO

Much of the gnathostome (jawed vertebrate) evolutionary radiation was dependent on the ability to sense and interpret the environment and subsequently act upon this information through utilization of a specialized mode of feeding involving the jaws. While the gnathostome skull, reflective of the vertebrate baüplan, typically is bilaterally symmetric with right (dextral) and left (sinistral) halves essentially representing mirror images along the midline, both adaptive and abnormal asymmetries have appeared. Herein we provide a basic primer on studies of the asymmetric development of the gnathostome skull, touching briefly on asymmetry as a field of study, then describing the nature of cranial development and finally underscoring evolutionary and functional aspects of left-right asymmetric cephalic development.


Assuntos
Padronização Corporal/fisiologia , Crânio/embriologia , Vertebrados/embriologia , Adaptação Biológica , Animais , Evolução Biológica , Desenvolvimento Embrionário , Seleção Genética
17.
Dev Biol ; 374(1): 185-97, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201021

RESUMO

Craniofacial development requires an exquisitely timed and positioned cross-talk between the embryonic cephalic epithelia and mesenchyme. This cross-talk underlies the precise translation of patterning processes and information into distinct, appropriate skeletal morphologies. The molecular and cellular dialogue includes communication via secreted signaling molecules, including Fgf8, and effectors of their interpretation. Herein, we use genetic attenuation of Fgf8 in mice and perform gain-of-function mouse-chick chimeric experiments to demonstrate that significant character states of the frontonasal and optic skeletons are dependent on Fgf8. Notably, we show that the normal orientation and polarity of the nasal capsules and their developing primordia are dependent on Fgf8. We further demonstrate that Fgf8 is required for midfacial integration, and provide evidence for a role for Fgf8 in optic capsular development. Taken together, our data highlight Fgf8 signaling in craniofacial development as a plausible target for evolutionary selective pressures.


Assuntos
Olho/embriologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Nasal/metabolismo , Alelos , Animais , Proliferação de Células , Embrião de Galinha , Ectoderma/metabolismo , Olho/metabolismo , Genótipo , Marcação In Situ das Extremidades Cortadas , Camundongos , Microscopia Eletrônica de Varredura/métodos , Modelos Biológicos , Transdução de Sinais , Fatores de Tempo
18.
Dev Biol ; 377(2): 428-48, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23473983

RESUMO

The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.


Assuntos
Evolução Biológica , Região Branquial/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Arcada Osseodentária/embriologia , Modelos Biológicos , Tubarões/embriologia , Fatores Etários , Animais , Primers do DNA/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/ultraestrutura , Hibridização In Situ , Arcada Osseodentária/anatomia & histologia , Microscopia Eletrônica de Varredura , Filogenia , Tubarões/anatomia & histologia , Especificidade da Espécie
19.
Nucleic Acids Res ; 40(3): 1021-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21984414

RESUMO

Mammalian tissues display a remarkable complexity of splicing patterns. Nevertheless, only few examples of tissue-specific splicing regulators are known. Herein, we characterize a novel splicing regulator named RBM11, which contains an RNA Recognition Motif (RRM) at the amino terminus and a region lacking known homology at the carboxyl terminus. RBM11 is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 mRNA levels fluctuate in a developmentally regulated manner, peaking perinatally in brain and cerebellum, and at puberty in testis, in concomitance with differentiation events occurring in neurons and germ cells. Deletion analysis indicated that the RRM of RBM11 is required for RNA binding, whereas the carboxyl terminal region permits nuclear localization and homodimerization. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. Transcription inhibition/release experiments and exposure of cells to stress revealed a dynamic movement of RBM11 between nucleoplasm and speckles, suggesting that its localization is affected by the transcriptional status of the cell. Splicing assays revealed a role for RBM11 in the modulation of alternative splicing. In particular, RBM11 affected the choice of alternative 5' splice sites in BCL-X by binding to specific sequences in exon 2 and antagonizing the SR protein SRSF1. Thus, our findings identify RBM11 as a novel tissue-specific splicing factor with potential implication in the regulation of alternative splicing during neuron and germ cell differentiation.


Assuntos
Processamento Alternativo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Núcleo Celular/genética , Dimerização , Células HEK293 , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênicos/toxicidade , Proteínas Nucleares/antagonistas & inibidores , Estresse Oxidativo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
20.
Cell Death Discov ; 10(1): 54, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278809

RESUMO

Riboflavin Transporter Deficiency (RTD) is a rare genetic, childhood-onset disease. This pathology has a relevant neurological involvement, being characterized by motor symptoms, ponto-bulbar paralysis and sensorineural deafness. Such clinical presentation is associated with muscle weakness and motor neuron (MN) degeneration, so that RTD is considered part of the MN disease spectrum. Based on previous findings demonstrating energy dysmetabolism and mitochondrial impairment in RTD induced Pluripotent Stem cells (iPSCs) and iPSC-derived MNs, here we address the involvement of intrinsic apoptotic pathways in disease pathogenesis using these patient-specific in vitro models by combined ultrastructural and confocal analyses. We show impaired neuronal survival of RTD iPSCs and MNs. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) documents severe alterations in patients' cells, including deranged mitochondrial ultrastructure, and altered plasma membrane and nuclear organization. Occurrence of aberrantly activated apoptosis is confirmed by immunofluorescence and TUNEL assays. Overall, our work provides evidence of a role played by mitochondrial dysfunction in RTD, and identifies neuronal apoptosis as a contributing event in disease pathogenesis, indicating intrinsic apoptosis pathways as possible relevant targets for more effective therapeutical approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA