Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immunity ; 55(11): 2059-2073.e8, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351375

RESUMO

T memory stem cells (TSCM) display increased self-renewal and prolonged survival capabilities, thus preventing T cell exhaustion and promoting effective anti-tumor T cell responses. TSCM cells can be expanded by Urolithin A (UA), which is produced by the commensal gut microbiome from foods rich in ellagitannins and is known to improve mitochondrial health. Oral UA administration to tumor-bearing mice conferred strong anti-tumor CD8+ T cell immunity, whereas ex vivo UA pre-treated T cells displayed improved anti-tumor function upon adoptive cell transfer. UA-induced TSCM formation depended on Pink1-mediated mitophagy triggering cytosolic release of the mitochondrial phosphatase Pgam5. Cytosolic Pgam5 dephosphorylated ß-catenin, which drove Wnt signaling and compensatory mitochondrial biogenesis. Collectively, we unravel a critical signaling pathway linking mitophagy to TSCM formation and suggest that the well-tolerated metabolic compound UA represents an attractive option to improve immune therapy.


Assuntos
Cumarínicos , Mitofagia , Camundongos , Animais , Cumarínicos/farmacologia , Via de Sinalização Wnt , Células-Tronco , Memória Imunológica
2.
Immunity ; 49(3): 384-386, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231977

RESUMO

The significant contribution of intestinal bacteria for the pathogenesis of colorectal cancer is widely accepted by now. In this issue of Immunity, two articles by Malik et al. (2018) and Wang et al. (2018) highlight the role of commensal fungi, which so far have been underestimated.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais/microbiologia , Células Supressoras Mieloides , Proteínas Adaptadoras de Sinalização CARD , Carcinogênese , Colo , Fungos , Humanos
3.
Gut ; 72(9): 1774-1782, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36707233

RESUMO

OBJECTIVE: Investigating the effect of ferroptosis in the tumour microenvironment to identify combinatory therapy for liver cancer treatment. DESIGN: Glutathione peroxidase 4 (GPx4), which is considered the master regulator of ferroptosis, was genetically altered in murine models for hepatocellular carcinoma (HCC) and colorectal cancer (CRC) to analyse the effect of ferroptosis on tumour cells and the immune tumour microenvironment. The findings served as foundation for the identification of additional targets for combine therapy with ferroptotic inducer in the treatment of HCC and liver metastasis. RESULTS: Surprisingly, hepatocyte-restricted GPx4 loss does not suppress hepatocellular tumourigenesis. Instead, GPx4-associated ferroptotic hepatocyte death causes a tumour suppressive immune response characterised by a CXCL10-dependent infiltration of cytotoxic CD8+ T cells that is counterbalanced by PD-L1 upregulation on tumour cells as well as by a marked HMGB1-mediated myeloid derived suppressor cell (MDSC) infiltration. Blocking PD-1 or HMGB1 unleashes T cell activation and prolongs survival of mice with Gpx4-deficient liver tumours. A triple combination of the ferroptosis inducing natural compound withaferin A, the CXCR2 inhibitor SB225002 and α-PD-1 greatly improves survival of wild-type mice with liver tumours. In contrast, the same combination does not affect tumour growth of subcutaneously grown CRC organoids, while it decreases their metastatic growth in liver. CONCLUSION: Our data highlight a context-specific ferroptosis-induced immune response that could be therapeutically exploited for the treatment of primary liver tumours and liver metastases.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Proteína HMGB1 , Neoplasias Hepáticas , Células Supressoras Mieloides , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteína HMGB1/uso terapêutico , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
4.
Immunity ; 30(1): 33-43, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19144315

RESUMO

It is well established that sustained increases in cyclic AMP (cAMP) such as those triggered by forskolin inhibit T cell activation. We describe here an unexpected phenomenon: in T cells, a transient cAMP increase triggered by the interaction with a dendritic cell strongly potentiates T cell receptor (TCR) signaling. We discovered this effect by examining the molecular basis of the adhesion-dependent sensitization of T cells. T cell adhesion caused extracellular-signal-regulated kinase (ERK) activation, which was necessary for the sensitization process. T cell sensitization could be mimicked in suspended cells by the uncaging of caged cAMP upon ultraviolet illumination. Calcium responses occurring in T cells upon interaction with dendritic cells were strongly inhibited when protein kinase A activation was blocked. Thus, whereas sustained cAMP increases are well known to inhibit TCR signaling, transient cAMP increases occurring physiologically upon formation of an immunological synapse facilitate antigen detection.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Células Dendríticas/imunologia , Imunofluorescência , Humanos , Camundongos , Receptores de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/fisiologia
5.
Blood ; 125(18): 2786-97, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25788703

RESUMO

Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures lifelong hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify Inositol-trisphosphate 3-kinase B (Itpkb) as an essential regulator of HSC homeostasis. Young Itpkb(-/-) mice accumulated phenotypic HSC, which were less quiescent and proliferated more than wild-type (WT) controls. Itpkb(-/-) HSC downregulated quiescence and stemness associated, but upregulated activation, oxidative metabolism, protein synthesis, and lineage associated messenger RNAs. Although they had normal-to-elevated viability and no significant homing defects, Itpkb(-/-) HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb(-/-) mice lost hematopoietic stem and progenitor cells and died with severe anemia. WT HSC normally repopulated Itpkb(-/-) hosts, indicating an HSC-intrinsic Itpkb requirement. Itpkb(-/-) HSC showed reduced colony-forming activity and increased stem-cell-factor activation of the phosphoinositide-3-kinase (PI3K) effectors Akt/mammalian/mechanistic target of rapamycin (mTOR). This was reversed by treatment with the Itpkb product and PI3K/Akt antagonist IP4. Transcriptome changes and biochemistry support mTOR hyperactivity in Itpkb(-/-) HSC. Treatment with the mTOR-inhibitor rapamycin reversed the excessive mTOR signaling and hyperproliferation of Itpkb(-/-) HSC without rescuing colony forming activity. Thus, we propose that Itpkb ensures HSC quiescence and function through limiting cytokine-induced PI3K/mTOR signaling and other mechanisms.


Assuntos
Anemia/genética , Anemia/mortalidade , Hematopoese/genética , Células-Tronco Hematopoéticas/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Homeostase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Índice de Gravidade de Doença
6.
Cancer Cell ; 40(2): 168-184.e13, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35120600

RESUMO

Standard cancer therapy targets tumor cells without considering possible damage on the tumor microenvironment that could impair therapy response. In rectal cancer patients we find that inflammatory cancer-associated fibroblasts (iCAFs) are associated with poor chemoradiotherapy response. Employing a murine rectal cancer model or patient-derived tumor organoids and primary stroma cells, we show that, upon irradiation, interleukin-1α (IL-1α) not only polarizes cancer-associated fibroblasts toward the inflammatory phenotype but also triggers oxidative DNA damage, thereby predisposing iCAFs to p53-mediated therapy-induced senescence, which in turn results in chemoradiotherapy resistance and disease progression. Consistently, IL-1 inhibition, prevention of iCAFs senescence, or senolytic therapy sensitizes mice to irradiation, while lower IL-1 receptor antagonist serum levels in rectal patients correlate with poor prognosis. Collectively, we unravel a critical role for iCAFs in rectal cancer therapy resistance and identify IL-1 signaling as an attractive target for stroma-repolarization and prevention of cancer-associated fibroblasts senescence.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Retais/metabolismo , Microambiente Tumoral , Animais , Biomarcadores , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Terapia Neoadjuvante , Prognóstico , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/etiologia , Neoplasias Retais/patologia , Transdução de Sinais , Microambiente Tumoral/genética
7.
Nat Metab ; 2(10): 1034-1045, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839596

RESUMO

Benign hepatosteatosis, affected by lipid uptake, de novo lipogenesis and fatty acid (FA) oxidation, progresses to non-alcoholic steatohepatitis (NASH) on stress and inflammation. A key macronutrient proposed to increase hepatosteatosis and NASH risk is fructose. Excessive intake of fructose causes intestinal-barrier deterioration and endotoxaemia. However, how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis remain unknown. Here we show, using mice, that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signalling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) peptide counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxaemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to FA in both mouse and human hepatocytes.


Assuntos
Frutose/farmacologia , Inflamação/metabolismo , Lipogênese/efeitos dos fármacos , Acetilcoenzima A/farmacologia , Animais , Endotoxemia/sangue , Feminino , Frutosefosfatos/farmacologia , Microbioma Gastrointestinal , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Intestinos/efeitos dos fármacos , Lipidômica , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regeneração/efeitos dos fármacos , Receptores Toll-Like/agonistas
8.
Elife ; 52016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26880557

RESUMO

ß-selection is the most pivotal event determining αß T cell fate. Here, surface-expression of a pre-T cell receptor (pre-TCR) induces thymocyte metabolic activation, proliferation, survival and differentiation. Besides the pre-TCR, ß-selection also requires co-stimulatory signals from Notch receptors - key cell fate determinants in eukaryotes. Here, we show that this Notch-dependence is established through antagonistic signaling by the pre-TCR/Notch effector, phosphoinositide 3-kinase (PI3K), and by inositol-trisphosphate 3-kinase B (Itpkb). Canonically, PI3K is counteracted by the lipid-phosphatases Pten and Inpp5d/SHIP-1. In contrast, Itpkb dampens pre-TCR induced PI3K/Akt signaling by producing IP4, a soluble antagonist of the Akt-activating PI3K-product PIP3. Itpkb(-/-) thymocytes are pre-TCR hyperresponsive, hyperactivate Akt, downstream mTOR and metabolism, undergo an accelerated ß-selection and can develop to CD4(+)CD8(+) cells without Notch. This is reversed by inhibition of Akt, mTOR or glucose metabolism. Thus, non-canonical PI3K-antagonism by Itpkb restricts pre-TCR induced metabolic activation to enforce coincidence-detection of pre-TCR expression and Notch-engagement.


Assuntos
Diferenciação Celular , Proliferação de Células , Inibidores de Fosfoinositídeo-3 Quinase , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptor Notch1/metabolismo , Timócitos/fisiologia , Animais , Sobrevivência Celular , Camundongos Endogâmicos C57BL
9.
Mol Cell Biol ; 34(18): 3356-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25047838

RESUMO

Production of the phosphoinositide lipid phosphatidylinositol (3,4,5)trisphosphate [PI(3,4,5)P3, or PIP3] by class I phosphoinositide 3-kinases (PI3Ks) is a major signaling mechanism whose deregulation contributes to serious diseases, including cancer. New findings suggest that tyrosine kinase receptor engagement results in the assembly of hetero-oligomeric PI3K complexes in which PI3Kα first activates PI3Kß, and PI3K catalytic activity then promotes recruitment and activation of the PIP3-removing tumor suppressor PTEN. Thus, PIP3 production is fine-tuned through formation of an intrinsically regulated "PI3Ksome."


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Domínio Catalítico , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA