Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 19(8): e1010842, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531401

RESUMO

Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.


Assuntos
Infecções por Escherichia coli , Sepse , Humanos , Escherichia coli , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Genes Bacterianos , Virulência/genética , Sepse/genética , Filogenia
2.
PLoS Genet ; 18(3): e1010112, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324915

RESUMO

Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern given its high mortality and increasing worldwide prevalence. Finding bacterial genetic variants that might contribute to patient death is of interest to better understand infection progression and implement diagnostic methods that specifically look for those factors. E. coli samples isolated from patients with BSI are an ideal dataset to systematically search for those variants, as long as the influence of host factors such as comorbidities are taken into account. Here we performed a genome-wide association study (GWAS) using data from 912 patients with E. coli BSI from hospitals in Paris, France. We looked for associations between bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and admission to intensive care unit), as well as two portals of entry (urinary and digestive tract), using various clinical variables from each patient to account for host factors. We did not find any association between genetic variants and patient outcomes, potentially confirming the strong influence of host factors in influencing the course of BSI; we however found a strong association between the papGII operon and entrance of E. coli through the urinary tract, which demonstrates the power of bacterial GWAS when applied to actual clinical data. Despite the lack of associations between E. coli genetic variants and patient outcomes, we estimate that increasing the sample size by one order of magnitude could lead to the discovery of some putative causal variants. Given the wide adoption of bacterial genome sequencing of clinical isolates, such sample sizes may be soon available.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Sepse , Bacteriemia/epidemiologia , Bacteriemia/genética , Bacteriemia/microbiologia , Bactérias , Escherichia coli/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Estudo de Associação Genômica Ampla , Humanos
3.
J Infect Dis ; 229(6): 1679-1687, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214565

RESUMO

BACKGROUND: Escherichia coli is frequently responsible for bloodstream infections (BSIs). Among digestive BSIs, biliary infections appear to be less severe. Respective roles of host factors, bacterial determinants (phylogroups, virulence, and antibiotic resistance), and portal of entry on outcome are unknown. METHODS: Clinical characteristics and prognosis of 770 episodes of E coli BSI were analyzed and isolates sequenced (Illumina technology) comparing phylogroups, multilocus sequence type, virulence, and resistance gene content. BSI isolates were compared with 362 commensal E coli from healthy subjects. RESULTS: Among 770 episodes, 135 were biliary, 156 nonbiliary digestive, and 479 urinary. Compared to urinary infections, BSIs of digestive origin occurred significantly more in men, comorbid, and immunocompromised patients. Digestive portal of entry was significantly associated with septic shock and death. Among digestive infections, patients with biliary infections were less likely to die (P = .032), despite comparable initial severity. Biliary E coli resembled commensals (phylogroup distribution, sequence type, and few virulence-associated genes) whereas nonbiliary digestive and urinary strains carried many virulence-associated genes. CONCLUSIONS: Escherichia coli strains responsible for biliary infections exhibit commensal characteristics and are associated with lower mortality rates, despite similar initial severity, than other digestive BSIs. Biliary drainage in addition to antibiotics in the management of biliary infections may explain improved outcome.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Masculino , Infecções por Escherichia coli/microbiologia , Feminino , Pessoa de Meia-Idade , Bacteriemia/microbiologia , Idoso , Adulto , Fatores de Virulência/genética , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Virulência/genética , Idoso de 80 Anos ou mais , Tipagem de Sequências Multilocus , Infecções Urinárias/microbiologia , Doenças Biliares/microbiologia , Filogenia , Farmacorresistência Bacteriana/genética
4.
Antimicrob Agents Chemother ; 68(10): e0055424, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194203

RESUMO

It has been shown that an evolutionary tradeoff between vertical (host growth rate) and horizontal (plasmid conjugation) transmissions contributes to global plasmid fitness. As conjugative IncC plasmids are important for the spread of multidrug resistance (MDR), in a broad range of bacterial hosts, we investigated vertical and horizontal transmissions of two multidrug-resistant IncC plasmids according to their backbones and MDR-region rearrangements, upon plasmid entry into a new host. We observed plasmid genome deletions after conjugation in three diverse natural Escherichia coli clinical strains, varying from null to high number depending on the plasmid, all occurring in the MDR region. The plasmid burden on bacterial fitness depended more on the strain background than on the structure of the MDR region, with deletions appearing to have no impact. Besides, we observed an increase in plasmid transfer rate, from ancestral host to new clinical recipient strains, when the IncC plasmid was rearranged. Finally, using a second set of conjugation experiments, we investigated the evolutionary tradeoff of the IncC plasmid during the critical period of plasmid establishment in E. coli K-12, by correlating the transfer rates of deleted or non-deleted IncC plasmids and their costs on the recipient strain. Plasmid deletions strongly improved conjugation efficiency with no negative growth effect. Our findings indicate that the flexibility of the MDR-region of the IncC plasmids can promote their dissemination, and provide diverse opportunities to capture new resistance genes. In a broader view, they suggest that the vertical-horizontal transmission tradeoff can be manipulated by the plasmid to improve its fitness.


Assuntos
Conjugação Genética , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Plasmídeos , Plasmídeos/genética , Escherichia coli/genética , Farmacorresistência Bacteriana Múltipla/genética , Transferência Genética Horizontal/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão
5.
Antimicrob Agents Chemother ; 67(10): e0011123, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37702541

RESUMO

Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Suínos , Antibacterianos , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Infecções por Escherichia coli/microbiologia
6.
Environ Microbiol ; 23(11): 7139-7151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431197

RESUMO

To get a global picture of the population structure of the Escherichia coli phylogroup E, encompassing the O157:H7 EHEC lineage, we analysed the whole genome of 144 strains isolated from various continents, hosts and lifestyles and representative of the phylogroup diversity. The strains possess 4331 to 5440 genes with a core genome of 2771 genes and a pangenome of 33 722 genes. The distribution of these genes among the strains shows an asymmetric U-shaped distribution. E phylogenetic strains have the largest genomes of the species, partly explained by the presence of mobile genetic elements. Sixty-eight lineages were delineated, some of them exhibiting extra-intestinal virulence genes and being virulent in the mouse sepsis model. Except for the EHEC lineages and the reference EPEC, EIEC and ETEC strains, very few strains possess intestinal virulence genes. Most of the strains were devoid of acquired resistance genes, but eight strains possessed extended-spectrum beta-lactamase genes. Human strains belong to specific lineages, some of them being virulent and antibiotic-resistant [sequence type complexes (STcs) 350 and 2064]. The E phylogroup mimics all the features of the species as a whole, a phenomenon already observed at the STc level, arguing for a fractal population structure of E. coli.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Escherichia coli , Proteínas de Escherichia coli/genética , Camundongos , Filogenia , Virulência/genética , Fatores de Virulência/genética
7.
Appl Environ Microbiol ; 87(24): e0135821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613750

RESUMO

Intestinal carriage of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana/genética , Escherichia coli , Plasmídeos , Carne Vermelha , Animais , Antibacterianos/farmacologia , Bovinos/microbiologia , Células Clonais , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Carne Vermelha/microbiologia , beta-Lactamases/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-31138573

RESUMO

We previously identified an operon involved in an arginine deiminase (ADI) pathway (arc operon) on a CTX-M-producing plasmid from an O102-ST405 strain of Escherichia coli As the ADI pathway was shown to be involved in the virulence of various Gram-positive bacteria, we tested whether the ADI pathway could be involved in the epidemiological success of extended-spectrum-ß-lactamase (ESBL)-producing E. coli strains. We studied two collections of human E. coli isolated in France (n = 493) and England (n = 1,509) and show that the prevalence of the arc operon (i) is higher in ESBL-producing strains (12.1%) than in nonproducers (2.5%), (ii) is higher in CTX-M-producing strains (16%) than in other ESBL producers (3.5%), and (iii) increased over time in ESBL-producing strains from 0% before 2000 to 43.3% in 2011 to 2012. The arc operon, found in strains from various phylogenetic backgrounds, is carried by IncF plasmids (85%) or chromosomes (15%) in regions framed by numerous insertion sequences, indicating multiple arrivals. Competition experiments showed that the arc operon enhances fitness of the strain in vitro in lysogeny broth with arginine. In vivo competition experiments showed that the arc operon is advantageous for the strain in a mouse model of urinary tract infection (UTI), whereas it is a burden in a mouse model of intestinal colonization. In summary, we have identified a trait linked to CTX-M-producing strains that is responsible for a trade-off between two main E. coli lifestyles, UTI and gut commensalism. This trait alone cannot explain the wide spread of ESBLs in E. coli but merits epidemiological surveillance.


Assuntos
Escherichia coli/genética , Hidrolases/genética , Óperon/genética , beta-Lactamases/genética , Animais , Inglaterra , Infecções por Escherichia coli/microbiologia , França , Humanos , Camundongos , Testes de Sensibilidade Microbiana/métodos , Filogenia , Plasmídeos/genética , Infecções Urinárias/microbiologia
9.
Environ Microbiol ; 21(8): 3107-3117, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31188527

RESUMO

The phylogeny of the Escherichia coli species, with the identification of seven phylogroups (A, B1, B2, C, D, E and F), is linked to the lifestyle of the strains. With the accumulation of whole genome sequence data, it became clear that some strains belong to a group intermediate between the F and B2 phylogroups, designated as phylogroup G. Here, we studied the complete sequences of 112 strains representative of the G phylogroup diversity and showed that it is composed of one main sequence type complex (STc)117 and four other STcs (STc657, STc454, STc738 and STc174). STc117, which phylogeny is characterized by very short internal branches, exhibits extensive O diversity, but little H-type and fimH allele diversity, whereas the other STcs are characterized by a main O, H and fimH type. STc117 strains possess many traits associated with extra-intestinal virulence, are virulent in a mouse sepsis model and exhibit multi-drug resistance such as CTX-M production. Epidemiologic data on 4,524 Australian and French strains suggest that STc117 is a poultry-associated lineage that can also establish in humans and cause extra-intestinal diseases. We propose an easy identification method that will help to trace this potentially virulent and resistant phylogroup in epidemiologic studies.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Animais , Austrália , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Filogenia , Virulência , Fatores de Virulência/genética
11.
Microbiome ; 12(1): 50, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468305

RESUMO

BACKGROUND: Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the ß-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS: While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of ß-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the ß-lactamase activity of the microbiota. The level of ß-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS: In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous ß-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Resiliência Psicológica , Adulto , Humanos , Microbioma Gastrointestinal/genética , beta-Lactamases/genética , beta-Lactamas/farmacologia , Voluntários Saudáveis , Antibacterianos , Bactérias/genética , Fezes/microbiologia
12.
Nat Commun ; 14(1): 3667, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339949

RESUMO

The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Camundongos , Virulência/genética , Ferro , Infecções por Escherichia coli/patologia , Ilhas Genômicas/genética , Estudo de Associação Genômica Ampla , Filogenia
13.
J Infect ; 87(3): 199-209, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37369264

RESUMO

OBJECTIVE: Whole genome sequencing (WGS) of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-E. coli) in developing countries is lacking. Here we describe the population structure and molecular characteristics of ESBL-E. coli faecal isolates in rural Southern Niger. METHODS: Stools of 383 healthy participants were collected among which 92.4% were ESBL-Enterobacterales carriers. A subset of 90 ESBL-E. coli containing stools (109 ESBL-E. coli isolates) were further analysed by WGS, using short- and long-reads. RESULTS: Most isolates belonged to the commensalism-adapted phylogroup A (83.5%), with high clonal diversity. The blaCTX-M-15 gene was the major ESBL determinant (98.1%), chromosome-integrated in approximately 50% of cases, in multiple integration sites. When plasmid-borne, blaCTX-M-15 was found in IncF (57.4%) and IncY plasmids (26.2%). Closely related plasmids were found in different genetic backgrounds. Genomic environment analysis of blaCTX-M-15 in closely related strains argued for mobilisation between plasmids or from plasmid to chromosome. CONCLUSIONS: Massive prevalence of community faecal carriage of CTX-M-15-producing E. coli was observed in a rural region of Niger due to the spread of highly diverse A phylogroup commensalism-adapted clones, with frequent chromosomal integration of blaCTX-M-15. Plasmid spread was also observed. These data suggest a risk of sustainable implementation of ESBL in community faecal carriage.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Níger/epidemiologia , Antibacterianos , beta-Lactamases/genética , Plasmídeos/genética
14.
mBio ; 13(2): e0038522, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377167

RESUMO

Toxin-antitoxin systems are genetic elements that are widespread in prokaryotes. Although molecular mode of action of many of these toxins has been identified, their biological functions are mostly unknown. We investigated the functional integration of the TisB/IstR toxin-antitoxin system in the Escherichia coli SOS genotoxic stress response network. We showed that the tisB gene is induced in cells exposed to high doses of the genotoxic antibiotic trimethoprim. However, we also found that TisB contributes to trimethoprim-induced lethality. This is a consequence of the TisB-induced drop in the proton motive force (PMF), which results in blocking the thymine import and therefore the functioning of the pyrimidine salvage pathway. Conversely, a TisB-induced PMF drop protects cells by preventing the import of some other toxic compounds, like the aminoglycoside antibiotic gentamicin and colicin M, in the SOS-induced cells. Colicins are cytotoxic molecules produced by Enterobacterales when they are exposed to strong genotoxic stresses in order to compete with other microbiota members. We indeed found that TisB contributes to E. coli's fitness during mouse gut colonization. Based on the results obtained here, we propose that the primary biological role of the TisB toxin is to increase the probability of survival and maintenance in the mammalian gut of their bacterial hosts when they have to simultaneously deal with massive DNA damages and a fierce chemical warfare with other microbiota members. IMPORTANCE The contribution of toxin-antitoxin systems to the persistence of bacteria to antibiotics has been intensively studied. This is also the case with the E. coli TisB/IstR toxin-antitoxin system, but the contribution of TisB to the persistence to antibiotics turned out to be not as straightforward as anticipated. In this study, we show that TisB can decrease, but also increase, cytotoxicity of different antibiotics. This inconsistency has a common origin, i.e., TisB-induced collapse of the PMF, which impacts the import and the action of different antibiotics. By taking into account the natural habitat of TisB bacterial hosts, the facts that this toxin-antitoxin system is integrated into the genotoxic stress response regulon SOS and that both SOS regulon and TisB are required for E. coli to colonize the host intestine, and the phenotypic consequences of the collapse of the PMF, we propose that TisB protects its hosts from cytotoxic molecules produced by competing intestinal bacteria.


Assuntos
Colicinas , Infecções por Escherichia coli , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Colicinas/genética , Dano ao DNA , Escherichia coli/metabolismo , Mamíferos , Camundongos , Trimetoprima
15.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435947

RESUMO

Escherichia coli is a ubiquitous bacterium that has been widely exposed to antibiotics over the last 70 years. It has adapted by acquiring different antibiotic-resistance genes (ARGs), the census of which we aim to characterize here. To do so, we analysed 70 301 E. coli genomes obtained from the EnteroBase database and detected 1 027 651 ARGs using the AMRFinder, Mustard and ResfinderFG ARG databases. We observed a strong phylogroup and clonal lineage specific distribution of some ARGs, supporting the argument for epistasis between ARGs and the strain genetic background. However, each phylogroup had ARGs conferring a similar antibiotic class resistance pattern, indicating phenotypic adaptive convergence. The G+C content or the type of ARG was not associated with the frequency of the ARG in the database. In addition, we identified ARGs from anaerobic, non-Proteobacteria bacteria in four genomes of E. coli, supporting the hypothesis that the transfer between anaerobic bacteria and E. coli can spontaneously occur but remains exceptional. In conclusion, we showed that phylum barrier and intra-species phylogenetic history are major drivers of the acquisition of a resistome in E. coli.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/classificação , Escherichia coli/genética , Filogenia , Antibacterianos/farmacologia , Bactérias/genética , Composição de Bases , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli , Transferência Genética Horizontal , Genes Bacterianos , Shigella/genética
16.
Genome Med ; 13(1): 77, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952335

RESUMO

BACKGROUND: Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Recent genomic analyses revealed that few clonal lineages are involved in bloodstream infections and captured the emergence of some of them. However, data on within sequence type (ST) population genetic structure evolution are rare. METHODS: We compared whole genome sequences of 912 E. coli isolates responsible for bloodstream infections from two multicenter clinical trials that were conducted in the Paris area, France, 12 years apart, in teaching hospitals belonging to the same institution ("Assistance Publique-Hôpitaux de Paris"). We analyzed the strains at different levels of granularity, i.e., the phylogroup, the ST complex (STc), and the within STc clone taking into consideration the evolutionary history, the resistance, and virulence gene content as well as the antigenic diversity of the strains. RESULTS: We found a mix of stability and changes overtime, depending on the level of comparison. Overall, we observed an increase in antibiotic resistance associated to a restricted number of genetic determinants and in strain plasmidic content, whereas phylogroup distribution and virulence gene content remained constant. Focusing on STcs highlighted the pauci-clonality of the populations, with only 11 STcs responsible for more than 73% of the cases, dominated by five STcs (STc73, STc131, STc95, STc69, STc10). However, some STcs underwent dramatic variations, such as the global pandemic STc131, which replaced the previously predominant STc95. Moreover, within STc131, 95 and 69 genomic diversity analysis revealed a highly dynamic pattern, with reshuffling of the population linked to clonal replacement sometimes coupled with independent acquisitions of virulence factors such as the pap gene cluster bearing a papGII allele located on various pathogenicity islands. Additionally, STc10 exhibited huge antigenic diversity evidenced by numerous O:H serotype/fimH allele combinations, whichever the year of isolation. CONCLUSIONS: Altogether, these data suggest that the bloodstream niche is occupied by a wide but specific phylogenetic diversity and that highly specialized extra-intestinal clones undergo frequent turnover at the within ST level. Additional worldwide epidemiological studies overtime are needed in different geographical and ecological contexts to assess how generalizable these data are.


Assuntos
Bacteriemia/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/genética , Filogenia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/diagnóstico , Proteínas de Escherichia coli/genética , Evolução Molecular , França , Genoma Bacteriano , Genômica/métodos , Genótipo , Polimorfismo de Nucleotídeo Único , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA