Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microb Cell Fact ; 23(1): 36, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287338

RESUMO

The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.


Assuntos
Lacase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Lacase/genética , Lacase/metabolismo , Trametes/genética , Trametes/metabolismo , Proteínas Recombinantes , Processamento de Proteína Pós-Traducional
2.
Hum Mol Genet ; 29(4): 635-648, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31943017

RESUMO

Mutations in each of the four human VPS13 (VPS13A-D) proteins are associated with distinct neurological disorders: chorea-acanthocytosis, Cohen syndrome, early-onset Parkinson's disease and spastic ataxia. Recent evidence suggests that the different VPS13 paralogs transport lipids between organelles at different membrane contact sites. How each VPS13 isoform is targeted to organelles is not known. We have shown that the localization of yeast Vps13 protein to membranes requires a conserved six-repeat region, the Vps13 Adaptor Binding (VAB) domain, which binds to organelle-specific adaptors. Here, we use a systematic mutagenesis strategy to determine the role of each repeat in recognizing each known adaptor. Our results show that mutation of invariant asparagines in repeats 1 and 6 strongly impacts the binding of all adaptors and blocks Vps13 membrane recruitment. However, we find that repeats 5-6 are sufficient for localization and interaction with adaptors. This supports a model where a single adaptor-binding site is found in the last two repeats of the VAB domain, while VAB domain repeat 1 may influence domain conformation. Importantly, a disease-causing mutation in VPS13D, which maps to the highly conserved asparagine residue in repeat 6, blocks adaptor binding and Vps13 membrane recruitment when modeled in yeast. Our findings are consistent with a conserved adaptor binding role for the VAB domain and suggest the presence of as-yet-unidentified adaptors in both yeast and humans.


Assuntos
Membrana Celular/metabolismo , Deficiência Intelectual/genética , Espasticidade Muscular/genética , Mutação , Atrofia Óptica/genética , Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ataxias Espinocerebelares/genética , Sítios de Ligação , Humanos , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809364

RESUMO

The conserved VPS13 proteins constitute a new family of lipid transporters at membrane contact sites. These large proteins are suspected to bridge membranes and form a direct channel for lipid transport between organelles. Mutations in the 4 human homologs (VPS13A-D) are associated with a number of neurological disorders, but little is known about their precise functions or the relevant contact sites affected in disease. In contrast, yeast has a single Vps13 protein which is recruited to multiple organelles and contact sites. The yeast model system has proved useful for studying the function of Vps13 at different organelles and identifying the localization determinants responsible for its membrane targeting. In this review we describe recent advances in our understanding of VPS13 proteins with a focus on yeast research.


Assuntos
Transporte Biológico/genética , Membrana Celular/genética , Lipídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Membrana Celular/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Mutação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Traffic ; 19(4): 285-295, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29405545

RESUMO

The polytopic yeast protein Chs3 (chitin synthase III) relies on a dedicated membrane-localized chaperone, Chs7, for its folding and expression at the cell surface. In the absence of Chs7, Chs3 forms high molecular weight aggregates and is retained in the endoplasmic reticulum (ER). Chs7 was reported to be an ER resident protein, but its role in Chs3 folding and transport was not well characterized. Here, we show that Chs7 itself exits the ER and localizes with Chs3 at the bud neck and intracellular compartments. We identified mutations in the Chs7 C-terminal cytosolic domain that do not affect its chaperone function, but cause it to dissociate from Chs3 at a post-ER transport step. Mutations that prevent the continued association of Chs7 with Chs3 do not block delivery of Chs3 to the cell surface, but dramatically reduce its catalytic activity. This suggests that Chs7 engages in functionally distinct interactions with Chs3 to first promote its folding and ER exit, and subsequently to regulate its activity at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Quitina Sintase/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quitina Sintase/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Traffic ; 18(2): 110-122, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27883263

RESUMO

Sorting nexins are PX domain-containing proteins that bind phospholipids and often act in membrane trafficking where they help to select cargo. However, the functions and cargo specificities of many sorting nexins are unknown. Here, a high-throughput imaging screen was used to identify new sorting nexin cargo in the yeast Saccharomyces cerevisiae. Deletions of 9 different sorting nexins were screened for mislocalization of a set of green fluorescent protein (GFP)-tagged membrane proteins found at the plasma membrane, Golgi or endosomes. This identified 27 proteins that require 1 or more sorting nexins for their correct localization, 23 of which represent novel sorting nexin cargo. Nine hits whose sorting was dependent on Snx4, the sorting nexin-containing retromer complex, or both retromer and Snx3, were examined in detail to search for potential sorting motifs. We identified cytosolic domains of Ear1, Ymd8 and Ymr010w that conferred retromer-dependent sorting on a chimeric reporter and identified conserved residues required for this sorting in a functional assay. This work defined a consensus sequence for retromer and Snx3-dependent sorting.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Nexinas de Classificação/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
6.
Nature ; 489(7417): 585-9, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22940862

RESUMO

Macromolecular assemblies involving membrane proteins (MPs) serve vital biological roles and are prime drug targets in a variety of diseases. Large-scale affinity purification studies of soluble-protein complexes have been accomplished for diverse model organisms, but no global characterization of MP-complex membership has been described so far. Here we report a complete survey of 1,590 putative integral, peripheral and lipid-anchored MPs from Saccharomyces cerevisiae, which were affinity purified in the presence of non-denaturing detergents. The identities of the co-purifying proteins were determined by tandem mass spectrometry and subsequently used to derive a high-confidence physical interaction map encompassing 1,726 membrane protein-protein interactions and 501 putative heteromeric complexes associated with the various cellular membrane systems. Our analysis reveals unexpected physical associations underlying the membrane biology of eukaryotes and delineates the global topological landscape of the membrane interactome.


Assuntos
Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Quitina Sintase/metabolismo , Detergentes , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Espectrometria de Massas , Proteínas de Membrana/análise , Proteínas de Membrana/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química
7.
Biochem Soc Trans ; 45(4): 913-921, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28630138

RESUMO

The Ras proteins are well-known drivers of many cancers and thus represent attractive targets for the development of anticancer therapeutics. Inhibitors that disrupt the association of the Ras proteins with membranes by blocking the addition of the farnesyl lipid moiety to the Ras C-terminus failed in clinical trials. Here, we explore the possibility of targeting a second lipid modification, S-acylation, commonly referred to as palmitoylation, as a strategy to disrupt the membrane interaction of specific Ras isoforms. We review the enzymes involved in adding and removing palmitate from Ras and discuss their potential roles in regulating Ras tumorigenesis. In addition, we examine other proteins that affect Ras protein localization and may serve as future drug targets.


Assuntos
Aciltransferases/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tioléster Hidrolases/antagonistas & inibidores , Proteínas ras/metabolismo , Aciltransferases/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Cisteína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Humanos , Hidrólise/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Lipoilação/efeitos dos fármacos , Terapia de Alvo Molecular/tendências , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Transporte Proteico/efeitos dos fármacos , Tioléster Hidrolases/metabolismo , Proteínas ras/genética
8.
Hum Mol Genet ; 23(15): 4142-60, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24705354

RESUMO

HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10(-5)). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.


Assuntos
Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Huntington/genética , Proteínas do Tecido Nervoso/genética , Processamento de Proteína Pós-Traducional , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células COS , Proteínas de Ciclo Celular , Chlorocebus aethiops , Redes Reguladoras de Genes , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Anotação de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Biochem Soc Trans ; 43(2): 193-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849916

RESUMO

Protein palmitoylation is a dynamic post-translational modification, where the 16-carbon fatty acid, palmitate, is added to cysteines of proteins to modulate protein sorting, targeting and signalling. Palmitate removal from proteins is mediated by acyl protein thioesterases (APTs). Although initially identified as lysophospholipases, increasing evidence suggests APT1 and APT2 are the major APTs that mediate the depalmitoylation of diverse cellular substrates. Here, we describe the conserved functions of APT1 and APT2 across organisms and discuss the possibility that these enzymes are members of a larger family of depalmitoylation enzymes.


Assuntos
Lipoilação/genética , Tioléster Hidrolases/genética , Cisteína/genética , Cisteína/metabolismo , Descoberta de Drogas , Humanos , Palmitatos/metabolismo , Transporte Proteico , Tioléster Hidrolases/metabolismo
10.
Am J Hum Genet ; 89(1): 162-7, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21763482

RESUMO

The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.


Assuntos
Mutação , Doença de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Adulto , Idade de Início , Sequência de Aminoácidos , Transporte Biológico , Endossomos/genética , Endossomos/metabolismo , Feminino , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
11.
Mol Biol Cell ; 35(6): ar76, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598303

RESUMO

Endosomal coats incorporate membrane-binding subunits such as sorting nexin (SNX) proteins. The Saccharomyces cerevisiae SNX-BAR paralogs Vin1 and Vps5 are respective subunits of the endosomal VINE and retromer complexes whose dimerizing BAR domains are required for complex assembly and membrane association. However, a degree of promiscuity is predicted for yeast BAR-BAR pairings, and recent work has implicated the unstructured N-terminal domains of Vin1 and Vps5 in coat formation. Here, we map N-terminal signals in both SNX-BAR paralogs that contribute to the assembly and function of two distinct endosomal coats in vivo. Whereas Vin1 leverages a polybasic region and adjacent hydrophobic motif to bind Vrl1 and form VINE, the N-terminus of Vps5 interacts with the retromer subunit Vps29 at two sites, including a conserved hydrophobic pocket in Vps29 that engages other accessory proteins in humans. We also examined the sole isoform of Vps5 from the milk yeast Kluyveromyces lactis and found that ancestral yeasts may have used a nested N-terminal signal to form both VINE and retromer. Our results suggest that the specific assembly of Vps5-family SNX-BAR coats depends on inputs from unique N-terminal sequence features in addition to BAR domain coupling, expanding our understanding of endosomal coat biology.


Assuntos
Endossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Nexinas de Classificação , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Ligação Proteica , Domínios Proteicos , Humanos , Sequência de Aminoácidos
12.
Traffic ; 12(6): 715-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453443

RESUMO

Current models suggest that TRAPP tethering complexes exist in two forms. Whereas the seven-subunit TRAPPI complex mediates ER-to-Golgi transport, TRAPPII contains three additional subunits (Trs65, Trs120 and Trs130) and is required for distinct tethering events at Golgi membranes. It is not clear how TRAPPII assembly is regulated. Here, we show that Tca17 is a fourth TRAPPII-specific component, and that Trs65 and Tca17 interact with distinct domains of Trs130 and make different contributions to complex assembly. Whereas Tca17 promotes the stable association of TRAPPII-specific subunits with the core complex, Trs65 stabilizes TRAPPII in an oligomeric form. We show that Trs85, which was previously reported to be a subunit of both TRAPPI and TRAPPII, is not associated with the TRAPPII complex in yeast. However, we find that proteins related to Trs85, Trs65 and Tca17 are part of the same TRAPP complex in mammalian cells. These findings have implications for models of TRAPP complex formation and suggest that TRAPP complexes may be organized differently in yeast and mammals.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Animais , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética
13.
Curr Opin Cell Biol ; 76: 102087, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569261

RESUMO

The endolysosomal network consists of highly dynamic membrane-bound compartments that control subcellular degradative and recycling processes. A conserved family of endosomal coat complexes known as SNX-BARs drive the formation of tubular membrane transport carriers for cargo retrieval. Whereas SNX1-related SNX-BARs were previously thought to rely on their association with the retromer complex to recognize cargo, recent work shows this class of SNX-BARs can directly bind and deliver cargo. In this review, we examine the retromer-independent roles of SNX-BAR proteins in yeast and metazoans and explore their functional overlap with endosomal sorting complexes and accessory factors. We also discuss new work that highlights the role of the disordered N-terminal regions of SNX-BARs in complex assembly and function.


Assuntos
Endossomos , Nexinas de Classificação , Transporte Biológico , Endossomos/metabolismo , Células HeLa , Humanos , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
14.
Elife ; 112022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938928

RESUMO

Membrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway. The function of the yeast VARP homolog Vrl1 has been overlooked due to an inactivating mutation found in commonly studied strains. Here, we demonstrate that Vrl1 has features of a SNX-BAR coat protein and forms an obligate complex with Vin1, the paralog of the retromer SNX-BAR protein Vps5. Unique features in the Vin1 N-terminus allow Vrl1 to distinguish it from Vps5, thereby forming a complex that we have named VINE. The VINE complex occupies endosomal tubules and redistributes a conserved mannose 6-phosphate receptor-like protein from endosomes. We also find that membrane recruitment by Vin1 is essential for Vrl1 GEF activity, suggesting that VINE is a multifunctional coat complex that regulates trafficking and signaling events at the endosome.


All healthy cells have a highly organized interior: different compartments with specialized roles are in different places, and in order to do their jobs properly, proteins need to be in the right place. Endosomes are membrane-bound compartments that act as transport hubs where proteins are sorted into small vesicles and delivered to other parts of the cell. Two groups of proteins regulate this transport: the first group, known as VPS9 GEFs, switches on the enzymes that recruit the second group of proteins, called the sorting nexins. This second group is responsible for forming the transport vesicles via which proteins are distributed all over the cell. Defects in protein sorting can lead to various diseases, including neurodegenerative conditions such as Parkinson's disease and juvenile amyotrophic lateral sclerosis. Scientists often use budding yeast cells to study protein sorting, because these cells are similar to human cells, but easier to grow in large numbers and examine in the laboratory. Previous work showed that a yeast protein called Vrl1 is equivalent to a VPS9 GEF from humans called VARP. However, Vrl1 only exists in wild forms of budding yeast, and not in laboratory strains of the organism. Therefore, researchers had not studied Vrl1 in detail, and its roles remained unclear. To learn more about Vrl1, Shortill et al. started by re-introducing the protein into laboratory strains of budding yeast and observing what happened to protein sorting in these cells. Like VARP, Vrl1 was found in the endosomes of budding yeast. However, biochemical experiments revealed that, while human VARP binds to a protein called retromer, Vrl1 does not bind to the equivalent protein in yeast. Instead, Vrl1 itself has features of both the VPS9 GEFs and the sorting nexins. Shortill et al. also found that Vrl1 interacted with a different protein in the sorting nexin family called Vin1. In the absence of Vrl1, Vin1 was found floating around the cell, but once Vrl1 was re-introduced into the budding yeast, Vin1 relocated to the endosomes. Vrl1 uses its VPS9 GEF part to move itself to the endosome membrane, and Vin1 controls this movement, highlighting the interdependence between the two proteins. Once they are at the endosome together, Vrl1 and Vin1 help redistribute proteins to other parts of the cell. This study suggests that, like VARP, Vrl1 cooperates with sorting nexins to transport proteins. Since many previous experiments about protein sorting were carried out in yeast cells lacking Vrl1, it is possible that this process was overlooked despite its potential importance. These new findings could also help other researchers investigating how endosomes and protein sorting work, or do not work, in the context of neurodegenerative diseases.


Assuntos
Proteínas de Saccharomyces cerevisiae , Nexinas de Classificação , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Manose/metabolismo , Fosfatos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Elife ; 112022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354737

RESUMO

Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Gotículas Lipídicas/metabolismo , Ergosterol , Lipídeos , Proteínas Relacionadas à Autofagia/metabolismo
16.
Traffic ; 10(6): 713-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19220810

RESUMO

Vesicle tethers are long coiled-coil proteins or multisubunit complexes that provide specificity to the membrane fusion process by linking cargo-containing vesicles to target membranes. Transport protein particle (TRAPP) is a well-characterized multisubunit tethering complex that acts as a GTP exchange factor and is present in two cellular forms: a 7 subunit TRAPP I complex required for ER-to-Golgi transport, and a 10 subunit TRAPP II complex that mediates post-Golgi trafficking. In this work, we have identified Tca17, which is encoded by the non-essential ORF YEL048c, as a novel binding partner of the TRAPP complex. Loss of Tca17 or any of the non-essential TRAPP subunits (Trs33, Trs65 and Trs85) leads to defects in the Golgi-endosomal recycling of Snc1. We show that Tca17, a Sedlin_N family member similar to the TRAPP subunit Trs20, interacts with the TRAPP complex in a Trs33- and Trs65-dependent manner. Mutation of TCA17 or TRS33 perturbs the association of Trs65 with the rest of the TRAPP complex and alters the localization of the Rab GTPase Ypt31. These data support a model in which Tca17 acts with Trs33 and Trs65 to promote the assembly and/or stability of the TRAPP complex and regulate its activity in post-Golgi trafficking events.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Complexo de Golgi/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
17.
J Cell Biol ; 174(1): 19-25, 2006 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-16818716

RESUMO

The yeast chitin synthase Chs3 provides a well-studied paradigm for polytopic membrane protein trafficking. In this study, high-throughput analysis of the yeast deletion collection identifies a requirement for Pfa4, which is an uncharacterized protein with protein acyl transferase (PAT) homology, in Chs3 transport. PATs, which are the enzymatic mediators of protein palmitoylation, have only recently been discovered, and few substrates have been identified. We find that Chs3 is palmitoylated and that this modification is Pfa4-dependent, indicating that Pfa4 is indeed a PAT. Chs3 palmitoylation is required for ER export, but not for interaction with its dedicated ER chaperone, Chs7. Nonetheless, both palmitoylation and chaperone association are required to prevent the accumulation of Chs3 in high-molecular mass aggregates at the ER. Our data indicate that palmitoylation is necessary for Chs3 to attain an export-competent conformation, and suggest the possibility of a more general role for palmitoylation in the ER quality control of polytopic membrane proteins.


Assuntos
Aciltransferases/metabolismo , Retículo Endoplasmático/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Quitina Sintase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Nat Commun ; 12(1): 6064, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663815

RESUMO

Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAß1. We show that unlike canonical cytosolic calcineurin, CNAß1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAß1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAß1.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Membrana Celular/metabolismo , Lipoilação/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calcineurina/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
19.
Mol Microbiol ; 69(1): 201-17, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18466294

RESUMO

The fungal pathogen Candida albicans is able to utilize haemin and haemoglobin as iron sources. Haem-iron utilization is facilitated by Rbt5, an extracellular, glycosylphophatidylinositol (GPI)-anchored, haemin- and haemoglobin-binding protein. Here, we show that Rbt5 and its close homologue Rbt51 are short-lived plasma membrane proteins, degradation of which depends on vacuolar activity. Rbt5 facilitates the rapid endocytosis of haemoglobin into the C. albicans vacuole. We relied on recapitulation of the Rbt51-dependent haem-iron utilization in Saccharomyces cerevisiae to identify mutants defective in haemoglobin utilization. Homologues of representative mutants in S. cerevisiae were deleted in C. albicans and tested for haemoglobin-iron utilization and haemoglobin uptake. These mutants define a novel endocytosis-mediated haemoglobin utilization mechanism that depends on acidification of the lumen of the late secretory pathway, on a type I myosin and on the activity of the ESCRT pathway.


Assuntos
Candida albicans/metabolismo , Endocitose , Proteínas Fúngicas/metabolismo , Hemoglobinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Candida albicans/química , Candida albicans/genética , Ferricromo/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas de Ligação ao Ferro/análise , Proteínas de Ligação ao Ferro/genética , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
20.
Mol Biol Cell ; 17(4): 1859-70, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16452629

RESUMO

Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.


Assuntos
Endossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Endocitose , Endossomos/química , Complexo de Golgi/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína/genética , Proteínas R-SNARE/metabolismo , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA