Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nature ; 629(8011): 481-488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632411

RESUMO

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Cálcio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Especificidade por Substrato
2.
J Nutr ; 154(6): 1766-1780, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583524

RESUMO

BACKGROUND: A balanced intake of protein and constituent amino acids (AAs) requires adjustments to total food intake (protein leverage [PL]) and food selection to balance deficits and excesses (complementary feeding). We provided mice with choices of casein and whey, 2 protein sources that are complementary in AA balance, across a range of protein concentrations (P%) of digestible energy (DE). OBJECTIVES: We aimed to determine if: 1) PL operates similarly for casein and whey; 2) one protein source is preferred at control P%; 3) the preference changes as P% falls; and 4) AA intakes under control and low P% levels identify AAs that drive changes in protein selection. METHODS: Food intake and plasma fibroblast growth factor-21 (FGF21) concentrations were measured in mice at various P% (P7.5%-P33%). For direct comparisons, defined diets were used in which the protein source was either casein or whey. In food choice studies, mice had access to foods in which both casein and whey were provided at the same P% level at the same time. RESULTS: PL operated at different P% thresholds in casein (13%)- and whey (10%)-based diets, and the magnitude of PL was greater for casein. Although mice preferred casein under control conditions (P23%), a pronounced preference shift to whey occurred as P% fell to P13% and P10%. At low P%, increases in food intake were accompanied by increases in plasma FGF21, a protein hunger signal. Among AAs deficient in casein and enriched in whey, the intake of Cys was the most invariant as P% changed between P23% and P10%, appearing to drive the switch in protein preference. CONCLUSIONS: Mice selected between complementary protein sources, casein and whey, achieving stable total energy intake and regulated intake of AAs as P% varied. Supplementation of low P% casein diets with one whey-enriched AA, Cys, suppressed plasma FGF21 and total food intake.


Assuntos
Aminoácidos , Caseínas , Proteínas Alimentares , Ingestão de Energia , Fatores de Crescimento de Fibroblastos , Animais , Camundongos , Aminoácidos/sangue , Aminoácidos/metabolismo , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Caseínas/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Preferências Alimentares , Proteínas do Soro do Leite/administração & dosagem , Dieta
3.
Exp Cell Res ; 433(2): 113858, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995920

RESUMO

The relationships between parathyroid hormone (PTH) secretion and parathyroid cell membrane potential, including the identities and roles of K+ channels that regulate and/or modulate membrane potential are not well defined. Here we have used Western blot/immunohistochemistry as well as patch-clamp and perifusion techniques to identify and localize specific K+ channels in parathyroid cells and to investigate their roles in the control of membrane potential and PTH secretion. We also re-investigated the relationship between membrane potential and exocytosis. We showed that in single human parathyroid cells K+ current is dependent on at least two types of Ca2+-activated K+ channels: a small-conductance Ca2+-activated K+ channel (KSK) and a large-conductance voltage and Ca2+-activated K+ channel (KBK). These channels were sensitive to specific peptide blocking toxins including apamin, charybdotoxin, and iberiotoxin. These channels confer sensitivity of the membrane potential in single cells to high extracellular K+, TEA, and peptide toxins. Blocking of KBK potently inhibited K+ channel current, and KBK was shown to be expressed in the plasma membrane of parathyroid cells. In addition, when using the capacitance technique as an indicator of exocytosis, clamping the parathyroid cell at -60 mV prevented exocytosis, whereas holding the membrane potential at 0 mV facilitated it. Taken together, the results show that human parathyroid cells have functional KBK and KSK channels but the data presented herein suggest that KBK/KSK channels likely contribute to the maintenance of the membrane potential, and that membrane potential, per se, modulates exocytosis independently of [Ca2+]i.


Assuntos
Cálcio , Canais de Potássio , Humanos , Potenciais da Membrana , Cálcio/metabolismo , Peptídeos/metabolismo , Exocitose
4.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916296

RESUMO

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Receptores de Detecção de Cálcio/genética , Transdução de Sinais
5.
Pharmacol Rev ; 72(3): 558-604, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467152

RESUMO

The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.


Assuntos
Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/antagonistas & inibidores , Animais , Sítios de Ligação , Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia
6.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204449

RESUMO

We recently found that, in human osteoblasts, Homer1 complexes to Calcium-sensing receptor (CaSR) and mediates AKT initiation via mechanistic target of rapamycin complex (mTOR) complex 2 (mTORC2) leading to beneficial effects in osteoblasts including ß-catenin stabilization and mTOR complex 1 (mTORC1) activation. Herein we further investigated the relationship between Homer1 and CaSR and demonstrate a link between the protein levels of CaSR and Homer1 in human osteoblasts in primary culture. Thus, when siRNA was used to suppress the CaSR, we observed upregulated Homer1 levels, and when siRNA was used to suppress Homer1 we observed downregulated CaSR protein levels using immunofluorescence staining of cultured osteoblasts as well as Western blot analyses of cell protein extracts. This finding was confirmed in vivo as the bone cells from osteoblast specific CaSR-/- mice showed increased Homer1 expression compared to wild-type (wt). CaSR and Homer1 protein were both expressed in osteocytes embedded in the long bones of wt mice, and immunofluorescent studies of these cells revealed that Homer1 protein sub-cellular localization was markedly altered in the osteocytes of CaSR-/- mice compared to wt. The study identifies additional roles for Homer1 in the control of the protein level and subcellular localization of CaSR in cells of the osteoblast lineage, in addition to its established role of mTORC2 activation downstream of the receptor.


Assuntos
Proteínas de Arcabouço Homer/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Osteoblastos/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Linhagem da Célula , Sobrevivência Celular , Células Cultivadas , Feminino , Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Detecção de Cálcio/genética
7.
Mol Pharmacol ; 96(2): 204-211, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189667

RESUMO

The calcium-sensing receptor (CaS) is the principal controller of extracellular calcium (Ca2+ o) homeostasis and is inhibited in vitro and in vivo by protein kinase C (PKC)-mediated phosphorylation at CaST888 However, PKC inhibition enhances signaling even in CaSs lacking Thr-888, suggesting that an additional inhibitory site exists. An apparently equivalent PKC regulatory site in metabotropic glutamate receptor 5 (Ser-839) aligns not with CaST888 but instead with CaSS875, which was not previously considered to be a PKC site. CaSS875A (nonphosphorylatable) exhibited significantly enhanced Ca2+ o sensitivity of both intracellular Ca2+ mobilization and extracellular signal-regulated kinase 1/2 activation, whereas the phosphomimetic CaSS875D mutant exhibited a loss of function. The CaSS875A/T888A double mutant exhibited even greater Ca2+ o sensitivity than CaST888A alone, a response no longer enhanced by PKC inhibition. Finally, when expressed in CaS lacking its extracellular domain, the CaSS875A/T888A double mutation elicited maximal activation even under control conditions, but remained sensitive to negative allosteric modulation [N-(2-hydroxy-3-(2-cyano-3-chlorophenoxy)propyl)-1,1-dimethyl-2-(2-nephthyl)ethylamine] or Ca2+ o removal. Therefore, we have now identified CaSS875 as the missing PKC phosphorylation site that, together with CaST888, shapes the CaS signaling that underpins Ca2+ o homeostasis. Together with the inactive form of the CaS extracellular domain, these sites attenuate Ca2+ o sensitivity to attain appropriate physiologic Ca2+ o sensing. SIGNIFICANCE STATEMENT: Serine-875 represents the missing inhibitory PKC phosphorlyation site in CaS that in tandem with Thr-888 controls receptor activity.


Assuntos
Mutação , Proteína Quinase C/metabolismo , Receptores de Detecção de Cálcio/química , Serina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Treonina/metabolismo
8.
Mol Pharmacol ; 93(6): 619-630, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29636377

RESUMO

Calcium sensing receptor (CaSR) positive allosteric modulators (PAMs) are therapeutically important. However, few are approved for clinical use, in part due to complexities in assessing allostery at a receptor where the endogenous agonist (extracellular calcium) is present in all biologic fluids. Such complexity impedes efforts to quantify and optimize allosteric drug parameters (affinity, cooperativity, and efficacy) that dictate PAM structure-activity relationships (SARs). Furthermore, an underappreciation of the structural mechanisms underlying CaSR activation hinders predictions of how PAM SAR relates to in vitro and in vivo activity. Herein, we combined site-directed mutagenesis and calcium mobilization assays with analytical pharmacology to compare modes of PAM binding, positive modulation, and agonism. We demonstrate that 3-(2-chlorophenyl)-N-((1R)-1-(3-methoxyphenyl)ethyl)-1-propanamine (NPS R568) binds to a 7 transmembrane domain (7TM) cavity common to class C G protein-coupled receptors and used by (αR)-(-)-α-methyl-N-[3-[3-[trifluoromethylphenyl]propyl]-1-napthalenemethanamine (cinacalcet) and 1-benzothiazol-2-yl-1-(2,4-dimethylphenyl)-ethanol (AC265347); however, there are subtle distinctions in the contribution of select residues to the binding and transmission of cooperativity by PAMs. Furthermore, we reveal some common activation mechanisms used by different CaSR activators, but also demonstrate some differential contributions of residues within the 7TM bundle and extracellular loops to the efficacy of the PAM-agonist, AC265347, versus cooperativity. Finally, we show that PAMS potentiate the affinity of divalent cations. Our results support the existence of both global and ligand-specific CaSR activation mechanisms and reveal that allosteric agonism is mediated in part via distinct mechanisms to positive modulation.


Assuntos
Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sítio Alostérico/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Cinacalcete/farmacologia , Humanos , Ligantes , Mutagênese Sítio-Dirigida/métodos , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Relação Estrutura-Atividade
9.
J Cell Physiol ; 233(1): 38-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28419469

RESUMO

The mechanisms responsible for the processing and quality control of the calcium-sensing receptor (CaSR) in the endoplasmic reticulum (ER) are largely unknown. In a yeast two-hybrid screen of the CaSR C-terminal tail (residues 865-1078), we identified osteosarcoma-9 (OS-9) protein as a binding partner. OS-9 is an ER-resident lectin that targets misfolded glycoproteins to the ER-associated degradation (ERAD) pathway through recognition of specific N-glycans by its mannose-6-phosphate receptor homology (MRH) domain. We show by confocal microscopy that the CaSR and OS-9 co-localize in the ER in COS-1 cells. In immunoprecipitation studies with co-expressed OS-9 and CaSR, OS-9 specifically bound the immature form of wild-type CaSR in the ER. OS-9 also bound the immature forms of a CaSR C-terminal deletion mutant and a C677A mutant that remains trapped in the ER, although binding to neither mutant was favored over wild-type receptor. OS-9 binding to immature CaSR required the MRH domain of OS-9 indicating that OS-9 acts as a lectin most likely to target misfolded CaSR to ERAD. Our results also identify two distinct binding interactions between OS-9 and the CaSR, one involving both C-terminal domains of the two proteins and the other involving both N-terminal domains. This suggests the possibility of more than one functional interaction between OS-9 and the CaSR. When we investigated the functional consequences of altered OS-9 expression, neither knockdown nor overexpression of OS-9 was found to have a significant effect on CaSR cell surface expression or CaSR-mediated ERK1/2 phosphorylation.


Assuntos
Retículo Endoplasmático/metabolismo , Lectinas/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Degradação Associada com o Retículo Endoplasmático , Glicosilação , Células HEK293 , Humanos , Imunoprecipitação , Lectinas/genética , Microscopia Confocal , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Proteínas de Neoplasias/genética , Fosforilação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Interferência de RNA , Receptores de Detecção de Cálcio/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
11.
J Am Soc Nephrol ; 26(9): 2163-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25556167

RESUMO

The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glândulas Paratireoides/metabolismo , Hormônio Paratireóideo/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Acidose/metabolismo , Alcalose/metabolismo , Animais , Bovinos , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Histidina/genética , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fosforilação
12.
Calcif Tissue Int ; 96(1): 1-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25416346

RESUMO

Osteocalcin is a bone-specific protein that is regularly used in the clinical setting as a serum marker of bone turnover. Recent evidence indicates that osteocalcin plays a previously unsuspected role in the control of energy metabolism. Thus, osteocalcin-deficient mice have a profoundly deranged metabolic phenotype that includes insulin resistance, glucose intolerance and abnormal fat deposition. Additionally, osteocalcin administration in mice improves insulin sensitivity and decreases fat pad mass and serum triglyceride levels. The role of osteocalcin in human macronutrient metabolism is less clear but recent studies report positive correlations between serum osteocalcin levels and established indices of metabolic health. Herein, we review key physiological functions of osteocalcin, focussing on the roles of osteocalcin in the modulation of macronutrient metabolism, male reproductive function and foetal brain development. We consider the implications of these findings for the coordination of metabolism with development and fertility. We also consider evidence that a Class C G-protein-coupled receptor from a subgroup known to mediate nutrient-sensing acts as the osteocalcin receptor.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético/fisiologia , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Hormônios Peptídicos/metabolismo , Tecido Adiposo/metabolismo , Animais , Humanos , Osteoblastos/citologia
13.
Eur Biophys J ; 43(4-5): 169-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24668224

RESUMO

Recent studies suggest a link between adenosine triphosphate (ATP) concentration and the amplitude of cell membrane flickering (CMF) in the human erythrocyte (red blood cell; RBC). Potentially, the origin of this phenomenon and the unique discocyte shape could be active processes that account for some of the ATP turnover in the RBC. Active flickering could depend on several factors, including pH, osmolality, enzymatic rates and metabolic fluxes. In the present work, we applied the data analysis described in the previous article to study time courses of flickering RBCs acquired using differential interference contrast light microscopy in the presence of selected effectors. We also recorded images of air bubbles in aqueous detergent solutions and oil droplets in water, both of which showed rapid fluctuations in image intensity, the former showing the same type of spectral envelope (relative frequency composition) to RBCs. We conclude that CMF is not directly an active process, but that ATP affects the elastic properties of the membrane that flickers in response to molecular bombardment in a manner that is described mathematically by a constrained random walk.


Assuntos
Fenômenos Biofísicos , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Trifosfato de Adenosina/metabolismo , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteína Quinase C/metabolismo , Temperatura
14.
Biophys J ; 104(8): 1676-84, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23601315

RESUMO

We examined the response of Na(+),K(+)-ATPase (NKA) to monensin, a Na(+) ionophore, with and without ouabain, an NKA inhibitor, in suspensions of human erythrocytes (red blood cells). A combination of (13)C and (23)Na NMR methods allowed the recording of intra- and extracellular Na(+), and (13)C-labeled glucose time courses. The net influx of Na(+) and the consumption of glucose were measured with and without NKA inhibited by ouabain. A Bayesian analysis was used to determine probability distributions of the parameter values of a minimalist mathematical model of the kinetics involved, and then used to infer the rates of Na(+) transported and glucose consumed. It was estimated that the numerical relationship between the number of Na(+) ions transported by NKA per molecule of glucose consumed by a red blood cell was close to the ratio 6.0:1.0, agreeing with theoretical prediction.


Assuntos
Eritrócitos/metabolismo , Glucose/metabolismo , Sódio/metabolismo , Teorema de Bayes , Isótopos de Carbono , Humanos , Transporte de Íons , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Monensin/farmacologia , Ouabaína/farmacologia , Ionóforos de Sódio/farmacologia , Isótopos de Sódio , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Am J Physiol Endocrinol Metab ; 304(10): E1097-104, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23531616

RESUMO

In addition to its acute effects on hormone secretion, epithelial transport, and shape change, the calcium-sensing receptor (CaSR) modulates the expression of genes that control cell survival, proliferation, and differentiation as well as the synthesis of peptide hormones and enzymes. In the present study, we investigated the impacts of a CaSR agonist and several CaSR modulators on phosphorylation of transcription factor CREB residue Ser(133) in CaSR-expressing HEK293 (HEK-CaSR) cells and human adenomatous parathyroid cells. Elevated Ca(2+)o concentration had no effect on CREB phosphorylation (p-CREB) in control HEK293 cells but stimulated p-CREB in both HEK-CaSR cells and human parathyroid cells. In addition, p-CREB was stimulated by the positive modulator cinacalcet and inhibited by the negative modulator NPS 2143 in both CaSR-expressing cell types. Two positive modulators that bind in the receptor's Venus Fly Trap domain, l-phenylalanine and S-methylglutathione, had no effect on p-CREB in HEK-CaSR cells, demonstrating the existence of pronounced signaling bias. Analysis of the signaling pathways using specific inhibitors demonstrated that phosphoinositide-specific phospholipase C and conventional protein kinase C isoforms make major contributions to Ca(2+)o-induced p-CREB in both cell-types, suggesting key roles for Gq/11. In addition, in parathyroid cells but not HEK-CaSR cells, activation of p-CREB was dependent on Gi/o, demonstrating the existence of cell type-specific signaling.


Assuntos
Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Glândulas Paratireoides/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Cinacalcete , Glutationa/análogos & derivados , Glutationa/farmacologia , Células HEK293 , Humanos , Naftalenos/farmacologia , Fenilalanina/farmacologia , Fosforilação , Transdução de Sinais
16.
J Pharm Pharm Sci ; 16(2): 125-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23958187

RESUMO

Mechanism-Based Development of Natural Products in Human Health.

17.
Biochem J ; 441(3): 995-1006, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22010828

RESUMO

A yeast two-hybrid screen performed to identify binding partners of the CaR (calcium-sensing receptor) intracellular tail identified the adaptor protein 14-3-3θ as a novel binding partner that bound to the proximal membrane region important for CaR expression and signalling. The 14-3-3θ protein directly interacted with the CaR tail in pull-down studies and FLAG-tagged CaR co-immunoprecipitated with EGFP (enhanced green fluorescent protein)-tagged 14-3-3θ when co-expressed in HEK (human embryonic kidney)-293 or COS-1 cells. The interaction between the CaR and 14-3-3θ did not require a putative binding site in the membrane-proximal region of the CaR tail and was independent of PKC (protein kinase C) phosphorylation. Confocal microscopy demonstrated co-localization of the CaR and EGFP-14-3-3θ in the ER (endoplasmic reticulum) of HEK-293 cells that stably expressed the CaR (HEK-293/CaR cells), but 14-3-3θ overexpression had no effect on membrane expression of the CaR. Overexpression of 14-3-3θ in HEK-293/CaR cells attenuated CaR-mediated Rho signalling, but had no effect on ERK (extracellular-signal-regulated kinase) 1/2 signalling. Another isoform identified from the library, 14-3-3ζ, exhibited similar behaviour to that of 14-3-3θ with respect to CaR tail binding, cellular co-localization and impact on receptor-mediated signalling. However, unlike 14-3-3θ, this isoform, when overexpressed, significantly reduced CaR plasma membrane expression. Results indicate that 14-3-3 proteins mediate CaR-dependent Rho signalling and may modulate the plasma membrane expression of the CaR.


Assuntos
Proteínas 14-3-3/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transfecção
18.
Front Physiol ; 14: 1117352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818436

RESUMO

Whether GPCRs support the sensing of temperature as well as other chemical and physical modalities is not well understood. Introduction: Extracellular Ca2+ concentration (Ca2+ o) modulates core body temperature and the firing rates of temperature-sensitive CNS neurons, and hypocalcemia provokes childhood seizures. However, it is not known whether these phenomena are mediated by Ca2+ o-sensing GPCRs, including the calcium-sensing receptor (CaSR). In favor of the hypothesis, CaSRs are expressed in hypothalamic regions that support core temperature regulation, and autosomal dominant hypocalcemia, due to CaSR activating mutations, is associated with childhood seizures. Methods: Herein, we tested whether CaSR-dependent signaling is temperature sensitive using an established model system, CaSR-expressing HEK-293 cells. Results: We found that the frequency of Ca2+ o-induced Ca2+ i oscillations but not the integrated response was linearly dependent on temperature in a pathophysiologically relevant range. Chimeric receptor analysis showed that the receptor's C-terminus is required for temperature-dependent modulation and experiments with the PKC inhibitor GF109203X and CaSR mutants T888A and T888M, which eliminate a key phosphorylation site, demonstrated the importance of repetitive phosphorylation and dephosphorylation. Discussion and Conclusion: CaSRs mediate temperature-sensing and the mechanism, dependent upon repetitive phosphorylation and dephosphorylation, suggests that GPCRs more generally contribute to temperature-sensing.

19.
Cell Rep ; 42(12): 113536, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060447

RESUMO

Fibroblast growth factor 21 (FGF21), an endocrine signal robustly increased by protein restriction independently of an animal's energy status, exerts profound effects on feeding behavior and metabolism. Here, we demonstrate that considering the nutritional contexts within which FGF21 is elevated can help reconcile current controversies over its roles in mediating macronutrient preference, food intake, and energy expenditure. We show that FGF21 is primarily a driver of increased protein intake in mice and that the effect of FGF21 on sweet preference depends on the carbohydrate balance of the animal. Under no-choice feeding, FGF21 infusion either increased or decreased energy expenditure depending on whether the animal was fed a high- or low-energy diet, respectively. We show that while the role of FGF21 in mediating feeding behavior is complex, its role in promoting protein appetite is robust and that the effects on sweet preference and energy expenditure are macronutrient-state-dependent effects of FGF21.


Assuntos
Apetite , Fatores de Crescimento de Fibroblastos , Camundongos , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Comportamento Alimentar , Metabolismo Energético , Fígado/metabolismo
20.
J Biol Chem ; 286(27): 23771-9, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21566129

RESUMO

Sclerostin is an important regulator of bone homeostasis and canonical Wnt signaling is a key regulator of osteogenesis. Strontium ranelate is a treatment for osteoporosis that has been shown to reduce fracture risk, in part, by increasing bone formation. Here we show that exposure of human osteoblasts in primary culture to strontium increased mineralization and decreased the expression of sclerostin, an osteocyte-specific secreted protein that acts as a negative regulator of bone formation by inhibiting canonical Wnt signaling. Strontium also activated, in an apparently separate process, an Akt-dependent signaling cascade via the calcium-sensing receptor that promoted the nuclear translocation of ß-catenin. We propose that two discrete pathways linked to canonical Wnt signaling contribute to strontium-induced osteogenic effects in osteoblasts.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Proteínas Morfogenéticas Ósseas/metabolismo , Compostos Organometálicos/farmacologia , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Proteínas Wnt/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Transporte Ativo do Núcleo Celular/efeitos da radiação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Morfogenéticas Ósseas/genética , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Marcadores Genéticos/genética , Humanos , Osteoblastos/citologia , Osteócitos/citologia , Osteócitos/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA