Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Am Chem Soc ; 146(27): 18661-18671, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917446

RESUMO

A 7-tungstabicyclo[4.3.0]nonane complex forms slowly upon addition of cyclohexene to the ethylene complex, W(NAr)(OSiPh3)2(C2H4), at 22 °C. A single-crystal X-ray study showed its structure to be closest to a square pyramid (τ = 0.23). At 22 °C, loss of cyclohexene or ring contraction of the 7-tungstabicyclo[4.3.0]nonane complex is slow. Above ∼80 °C, cyclohexene is ejected to give W(NAr)(OSiPh3)2(C2H4), but a sufficient amount of 7-tungstabicyclo[4.3.0]nonane complex remains in the presence of cyclohexene and the ring contracts to yield methylenecyclohexane and a methylidene complex or ethylene and a cyclohexylidene complex. Other complexes that have been observed include an 8-tungstabicyclo[4.3.0]nonane complex formed from 1,7-octadiene, a 7-tungstabicyclo[4.2.0]octane complex (formed from a methylidene complex and cyclohexene), and a methylenecyclohexane complex. 13C-Labeling studies show that the exo-methylene group in methylenecyclohexane and the α positions in the 8-tungstabicyclo[4.3.0]nonane come from ethylene. An alternative ring contraction of a tungstacyclopentane made from two molecules of cyclohexene cannot be excluded when concentrations of ethylene are low. A cyclohexylidene complex could also form from two cyclohexenes via a newly proposed "alkyl/allyl" mechanism. The results reported here are the first experimental confirmations that a tungstacyclopentane can ring-contract thermally at a substituted WCα position to form a tungstacyclobutane and therefore metathesis-active alkylidenes.

2.
Inorg Chem ; 63(11): 4939-4946, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38451151

RESUMO

Bis(1-methyl-ortho-carboranyl)borane (HBMeoCb2) is a very strong Lewis acid that reacts with the isolated silanols present on silica partially dehydroxylated at 700 °C (SiO2-700) to form the well-defined Lewis site MeoCb2B(OSi≡) (1) and H2. 11B{1H} magic-angle spinning (MAS) nuclear magnetic resonance (NMR) data of 1 are consistent with that of a three-coordinate boron site. Contacting 1 with O═PEt3 (triethylphosphine oxide TEPO) and measuring 31P{1H} MAS NMR spectra show that 1 preserves the strong Lewis acidity of HBMeoCb2. Hydride ion affinity and fluoride ion affinity calculations using small molecules analogs of 1 also support the strong Lewis acidity of the boron sites in this material. Reactions of 1 with Cp2Hf(13CH3)2 show that the Lewis sites are capable of abstracting methide groups from Hf to form [Cp2Hf-13CH3][H313C-B(MeoCb2)OSi≡], but with a low overall efficiency.

3.
Phys Chem Chem Phys ; 26(11): 8734-8747, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416412

RESUMO

Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-ß-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.

4.
J Am Chem Soc ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921588

RESUMO

Cp2Hf(CH3)2 reacts with silica containing strong aluminum Lewis sites to form Cp2Hf-13CH3+ paired with aluminate anions. Solid-state NMR studies show that this reaction also forms neutral organohafnium and hafnium sites lacking methyl groups. Cp2Hf-13CH3+ reacts with isotatic polypropylene (iPP, Mn = 13.3 kDa; D = 2.4; mmmm = 94%; ∼110 C3H6/Hf) and H2 to form oils with moderate molecular weights (Mn = 290-1200 Da) in good yields. The aliphatic oils show characteristic 13C{1H} NMR properties consistent with complete loss of diastereoselectivity and formation of regioirregular errors under 1 atm H2. These results show that a Ziegler-Natta-type active site is compatible in a common reaction used to digest waste plastic into smaller aliphatic fragments.

5.
J Am Chem Soc ; 145(9): 4964-4968, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827508

RESUMO

Sulfated aluminum oxide (SAO), a high surface area material containing sulfate anions that behave like weakly coordinating anions, reacts with Ta(═CHtBu)(CH2tBu)3 to form [Ta(CH2tBu)2(O-)2][SAO] (1). Subsequent treatment with H2 forms Ta-H+ sites supported on SAO that are active in hydrogenolysis and alkane metathesis reactions. In both reactions Ta-H+ is more active than related neutral Ta-H sites supported on silica. This reaction chemistry extends to melts of high-density polyethylene (HDPE), where Ta-H+ converts 30% of a low molecular weight HDPE (Mn = 2.5 kg mol-1; D = 3.6) to low molecular weight paraffins under hydrogenolysis conditions. Under alkane metathesis conditions Ta-H+ converts this HDPE to a high MW fraction (Mn = 6.2 kDa; D = 2.3) and low molecular weight alkane products (C13-C32). These results show that incorporating charge as a design element in supported d0 metal hydrides is a viable strategy to increase the reaction rate in challenging reactions involving reorganization of C-C bonds in alkanes.

6.
J Am Chem Soc ; 144(41): 18761-18765, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197795

RESUMO

The reaction of W(NAr)(13C4H8)(OSiPh3)2 (1) (NAr = 2,6-diisopropylphenylimido) with silica partially dehydroxylated at 700 °C (SiO2-700) is highly dependent on the reaction conditions. The primary product of this reaction is W(NAr)(13C4H8)(OSiPh3)(OSi(O-)3) (2) when the reaction is carried out in the dark. Grafting 1 onto SiO2-700 in ambient lab light results in the formation of 2, W(NAr)(13CH213CH2)(OSiPh3)(OSi(O-)3) (4), and one isomer of square-pyramidal W(NAr)(13CH213CH(13Me)13CH2)(OSiPh3)(OSi(O-)3) (3). Heating 2 to 85 °C for 6 h results in the formation of 3, 4, W(NAr)(13CH(13Me)13CH213CH2)(OSiPh3)(OSi(O-)3) (5), and W(NAr)((13CH2)213CH(13Me)(13CH2)2)(OSiPh3)(OSi(O-)3) (6). Photolysis of 2 with blue LEDs (λmax = 450 nm) produces 4, both isomers of 3, 5, and free ethylene. In the presence of excess ethylene and blue LED irradiation at 85 °C, 1/SiO2-700 catalyzes the direct conversion of ethylene to propylene.


Assuntos
Alcenos , Dióxido de Silício , Etilenos
7.
J Am Chem Soc ; 144(24): 10929-10942, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675389

RESUMO

Exposure of a solution of the square pyramidal tungstacyclopentane complex W(NAr)(OSiPh3)2(C4H8) (Ar = 2,6-i-Pr2C6H3) to ethylene at 22 °C in ambient (fluorescent) light slowly leads to the formation of propylene and the square pyramidal tungstacyclobutane complex W(NAr)(OSiPh3)2(C3H6). No reaction takes place in the dark, but the reaction is >90% complete in ∼15 min under blue LED light (∼450 nm λmax). The intermediates are proposed to be (first) an α methyl tungstacyclobutane complex (W(NAr)(OSiPh3)2(αMeC3H5)), and then from it, a ß methyl version. The TBP versions of each can lose propylene and form a methylene complex, and in the presence of ethylene, the unsubstituted tungstacyclobutane complex W(NAr)(OSiPh3)2(C3H6). The W-Cα bond in an unobservable TBP W(NAr)(OSiPh3)2(C4H8) isomer in which the C4H8 ring is equatorial is proposed to be cleaved homolytically by light. A hydrogen atom moves or is moved from C3 to the terminal C4 carbon in the butyl chain as the bond between W and C3 forms to give the TBP α methyl tungstacyclobutane complex. Essentially, the same behavior is observed for W(NCPh3)(OSiPh3)2(C4H8) as for W(NAr)(OSiPh3)2(C4H8), except that the rate of consumption of W(NCPh3)(OSiPh3)2(C4H8) is about half that of W(NAr)(OSiPh3)2(C4H8). In this case, an α methyl-substituted tungstacyclobutane intermediate is observed, and the overall rate of formation of W(NCPh3)(OSiPh3)2(C3H6) and propylene from W(NCPh3)(OSiPh3)2(C4H8) is ∼20 times slower than in the NAr system. These results constitute the first experimentally documented examples of forming a metallacyclobutane ring from a metallacyclopentane ring (ring contraction) and establish how metathesis-active methylene and metallacyclobutane complexes can be formed and reformed in the presence of ethylene. They also raise the possibility that ambient light could play a role in some metathesis reactions that involve ethylene and tungsten-based imido alkylidene olefin metathesis catalysts, if not others.


Assuntos
Alcenos , Tungstênio , Alcenos/química , Catálise , Etilenos/química , Tungstênio/química
8.
Angew Chem Int Ed Engl ; 61(20): e202117279, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35235685

RESUMO

The silylium-like surface species [i Pr3 Si][(RF O)3 Al-OSi≡)] activates (N^N)Pd(CH3 )Cl (N^N=Ar-N=CMeMeC=N-Ar, Ar=2,6-bis(diphenylmethyl)-4-methylbenzene) by chloride ion abstraction to form [(N^N)Pd-CH3 ][(RF O)3 Al-OSi≡)] (1). A combination of FTIR, solid-state NMR spectroscopy, and reactions with CO or vinyl chloride establish that 1 shows similar reactivity patterns as (N^N)Pd(CH3 )Cl activated with Na[B(ArF )4 ]. Multinuclear 13 C{27 Al} RESPDOR and 1 H{19 F} S-REDOR experiments are consistent with a weakly coordinated ion-pair between (N^N)Pd-CH3 + and [(RF O)3 Al-OSi≡)]. 1 catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd-CH3 ]+ in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions. 1 produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate.

9.
Angew Chem Int Ed Engl ; 61(40): e202205745, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35951474

RESUMO

Al(OC(CF3 )3 )(PhF) reacts with silanols present on partially dehydroxylated silica to form well-defined ≡SiOAl(OC(CF3 )3 )2 (O(Si≡)2 ) (1). 27 Al NMR and DFT calculations with a small cluster model to approximate the silica surface show that the aluminum in 1 adopts a distorted trigonal bipyramidal coordination geometry by coordinating to a nearby siloxane bridge and a fluorine from the alkoxide. Fluoride ion affinity (FIA) calculations follow experimental trends and show that 1 is a stronger Lewis acid than B(C6 F5 )3 and Al(OC(CF3 )3 )(PhF) but is weaker than Al(OC(CF3 )3 ) and i Pr3 Si+ . Cp2 Zr(CH3 )2 reacts with 1 to form [Cp2 ZrCH3 ][≡SiOAl(OC(CF3 )3 )2 (CH3 )] (3) by methide abstraction. This reactivity pattern is similar to reactions of organometallics with the proposed strong Lewis acid sites present on Al2 O3 .

10.
J Am Chem Soc ; 143(41): 17209-17218, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633807

RESUMO

Upon addition of 5-15% PhNMe2H+X- (X = B(3,5-(CF3)2C6H3)4 or B(C6F5)4) to Mo(NAr)(styrene)(OSiPh3)2 (Ar = N-2,6-i-Pr2C6H3) in C6D6 an equilibrium mixture of Mo(NAr)(styrene)(OSiPh3)2 and Mo(NAr)(CMePh)(OSiPh3)2 is formed over 36 h at 45 °C (Keq = 0.36). A plausible intermediate in the interconversion of the styrene and 1-phenethylidene complexes is the 1-phenethyl cation, [Mo(NAr)(CHMePh)(OSiPh3)2]+, which can be generated using [(Et2O)2H][B(C6F5)4] as the acid. The interconversion can be modeled as two equilibria involving protonation of Mo(NAr)(styrene)(OSiPh3)2 or Mo(NAr)(CMePh)(OSiPh3)2 and deprotonation of the α or ß phenethyl carbon atom in [Mo(NAr)(CHMePh)(OSiPh3)2]+. The ratio of the rate of deprotonation of [Mo(NAr)(CHMePh)(OSiPh3)2]+ by PhNMe2 in the α position versus the ß position is ∼10, or ∼30 per Hß. The slow step is protonation of Mo(NAr)(styrene)(OSiPh3)2 (k1 = 0.158(4) L/(mol·min)). Proton sources such as (CF3)3COH or Ph3SiOH do not catalyze the interconversion of Mo(NAr)(styrene)(OSiPh3)2 and Mo(NAr)(CMePh)(OSiPh3)2, while the reaction of Mo(NAr)(styrene)(OSiPh3)2 with pyridinium salts generates only a trace (∼2%) of Mo(NAr)(CMePh)(OSiPh3)2 and forms a monopyridine adduct, [Mo(NAr)(CHMePh)(OSiPh3)2(py)]+ (two diastereomers). The structure of [Mo(NAr)(CHMePh)(OSiPh3)2]+ has been confirmed in an X-ray study; there is no structural indication that a ß proton is activated through a CHß interaction with the metal. W(NAr)(CMePh)(OSiPh3)2 is also converted into a mixture of W(NAr)(CMePh)(OSiPh3)2 and W(NAr)(styrene)(OSiPh3)2 (Keq = 0.47 at 45 °C in favor of the styrene complex) with 10% [PhNMe2H][B(C6F5)4] as the catalyst; the time required to reach equilibrium is approximately the same as in the Mo system.

11.
Inorg Chem ; 60(10): 6946-6949, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33844523

RESUMO

PAr3 containing o-OMe, o-Me, or o-Et substituents reacts with Brønsted sites on sulfated zirconium oxide (SZO) to form [HPAr3][SZO]. The phosphonium sites on this material react with bis(cyclooctadiene)nickel [Ni(cod)2] to form [Ni(PAr3)(codH)][SZO] that are active in ethylene polymerization reactions. Selective poisoning studies with pyridine show that ∼90% of the Ni(PAr3)(codH)+ sites in this material are active in polymerization reactions.

12.
J Am Chem Soc ; 141(4): 1484-1488, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30624924

RESUMO

The reaction of (tBu)2ArP (1a-h), where the para position of the Ar group contains electron-donating or electron-withdrawing groups, with sulfated zirconium oxide partially dehydroxylated at 300 °C (SZO300) forms [(tBu)2ArPH][SZO300] (2a-h). The equilibrium binding constants of 1a-h to SZO300 are related to the p Ka of [(tBu)2ArPH]; R3P that form less acidic phosphoniums (high p Ka values) bind stronger to SZO300 than R3P that form more acidic phosphoniums (low p Ka values). These studies show that Brønsted acid sites on the surface of SZO300 are not superacidic.

13.
J Am Chem Soc ; 141(1): 648-656, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525557

RESUMO

C-H bond activation via σ-bond metathesis is typically observed with transition-metal alkyl compounds in d0 or d0fn electron configurations, e.g., biscyclopentadienyl metal alkyls. Related C-H activation processes are also observed for transition-metal alkyls with higher d-electron counts, such as W(II), Fe(II), or Ir(III). A σ-bond metathesis mechanism has been proposed in all cases with a preference for an oxidative addition-reductive elimination pathway for Ir(III). Herein we show that, regardless of the exact mechanism, C-H activation with all of these compounds is associated with π-character of the M-C bond, according to a detailed analysis of the 13C NMR chemical shift tensor of the α-carbon. π-Character is also a requirement for olefin insertion, indicating its similarity to σ-bond metathesis. This observation explains the H2 response observed in d0 olefin polymerization catalysts and underlines that σ-bond metathesis, olefin insertion, and olefin metathesis are in fact isolobal reactions.

14.
Angew Chem Int Ed Engl ; 57(45): 14902-14905, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30265766

RESUMO

The reaction of allyltriisopropylsilane with partially dehydroxylated sulfated zirconium oxide (SZO) forms surface organosilicon species. Solid-state NMR studies of the organosilicon functionalized SZO shows that electrophilic [TIPS][SZO] sites are present on the surface, in addition to less reactive TIPS-Ox and SiOx species. The electrophilic [TIPS][SZO] sites are strong Lewis acids from solid-state 31 P NMR analysis of triethylphosphine oxide (O=PEt3 ) contacted materials. [TIPS][SZO] is active in hydrodefluorination reactions in the presence of Et3 SiH.

15.
Angew Chem Int Ed Engl ; 57(30): 9520-9523, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29874400

RESUMO

Multinuclear solid-state NMR studies of Cp*2 Sc-R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc-Et complex contains a ß-CH agostic interaction. The static central transition 45 Sc NMR spectra show that the quadrupolar coupling constants (Cq ) follow the trend of Ph≈Me>Et, indicating that the Sc-R bond is different in Cp*2 Sc-Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cß in Sc-CH2 CH3 is related to coupling between the filled σC-C orbital and the vacant πSc⋯HC* orbital.

16.
Angew Chem Int Ed Engl ; 57(22): 6398-6440, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-28685920

RESUMO

Many industrial catalysts contain isolated metal sites on the surface of oxide supports. Although such catalysts have been used in a broad range of processes for more than 40 years, there is often a very limited understanding about the structure of the catalytically active sites. This Review discusses how surface organometallic chemistry (SOMC) engineers surface sites with well-defined structures and provides insight into the nature of the active sites of industrial catalysts; the Review focuses in particular on olefin production and conversion processes.

17.
J Am Chem Soc ; 139(2): 849-855, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27997167

RESUMO

The spatial arrangement of atoms is directly linked to chemical function. A fundamental challenge in surface chemistry and catalysis relates to the determination of three-dimensional structures with atomic-level precision. Here we determine the three-dimensional structure of an organometallic complex on an amorphous silica surface using solid-state NMR measurements, enabled through a dynamic nuclear polarization surface enhanced NMR spectroscopy approach that induces a 200-fold increase in the NMR sensitivity for the surface species. The result, in combination with EXAFS, is a detailed structure for the surface complex determined with a precision of 0.7 Å. We observe a single well-defined conformation that is folded toward the surface in such a way as to include an interaction between the platinum metal center and the surface oxygen atoms.

18.
Proc Natl Acad Sci U S A ; 111(32): 11624-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25002479

RESUMO

Mononuclear Cr(III) surface sites were synthesized from grafting [Cr(OSi(O(t)Bu)3)3(tetrahydrofurano)2] on silica partially dehydroxylated at 700 °C, followed by a thermal treatment under vacuum, and characterized by infrared, ultraviolet-visible, electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS). These sites are highly active in ethylene polymerization to yield polyethylene with a broad molecular weight distribution, similar to that typically obtained from the Phillips catalyst. CO binding, EPR spectroscopy, and poisoning studies indicate that two different types of Cr(III) sites are present on the surface, one of which is active in polymerization. Density functional theory (DFT) calculations using cluster models show that active sites are tricoordinated Cr(III) centers and that the presence of an additional siloxane bridge coordinated to Cr leads to inactive species. From IR spectroscopy and DFT calculations, these tricoordinated Cr(III) sites initiate and regulate the polymer chain length via unique proton transfer steps in polymerization catalysis.

19.
Proc Natl Acad Sci U S A ; 111(41): 14693-7, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267650

RESUMO

Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced nuclear spin polarization, but the presence of PAs and/or glassing agents in the sample after dissolution can raise concerns for in vivo MRI applications, such as perturbing molecular interactions, and may induce the erosion of hyperpolarization in spectroscopy and MRI. We show that D-DNP can be performed efficiently with hybrid polarizing solids (HYPSOs) with 2,2,6,6-tetramethyl-piperidine-1-oxyl radicals incorporated in a mesostructured silica material and homogeneously distributed along its pore channels. The powder is wetted with a solution containing molecules of interest (for example, metabolites for MRS or MRI) to fill the pore channels (incipient wetness impregnation), and DNP is performed at low temperatures in a very efficient manner. This approach allows high polarization without the need for glass-forming agents and is applicable to a broad range of substrates, including peptides and metabolites. During dissolution, HYPSO is physically retained by simple filtration in the cryostat of the DNP polarizer, and a pure hyperpolarized solution is collected within a few seconds. The resulting solution contains the pure substrate, is free from any paramagnetic or other pollutants, and is ready for in vivo infusion.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Acetatos/química , Dipeptídeos/química , Fumaratos/química , Piruvatos/química , Solubilidade , Temperatura
20.
J Am Chem Soc ; 138(21): 6774-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140286

RESUMO

Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that µ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of µ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA