Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 37: 435-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25002277

RESUMO

A major challenge for systems neuroscience is to break the neural code. Computational algorithms for encoding information into neural activity and extracting information from measured activity afford understanding of how percepts, memories, thought, and knowledge are represented in patterns of brain activity. The past decade and a half has seen significant advances in the development of methods for decoding human neural activity, such as multivariate pattern classification, representational similarity analysis, hyperalignment, and stimulus-model-based encoding and decoding. This article reviews these advances and integrates neural decoding methods into a common framework organized around the concept of high-dimensional representational spaces.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos
2.
Neuroimage ; 183: 99-111, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30081195

RESUMO

How does the brain represent a newly-learned mental model? Representational similarity analysis (RSA) has revealed the neural basis of common representational spaces learned early in development, such as categories of natural kinds. This study uses RSA to examine the neural implementation of a newly-learned mental model-i.e., a representational space created through deductive reasoning-and study the structure of previously found parietal activity in reasoning tasks. Specifically, all the information in this mental model could only be obtained through abstract transitive reasoning, as there were no predictive differences between observable features in the stimuli, and stimuli were counterbalanced across participants. Participants were shown unfamiliar face portraits paired with names and asked to learn about the height of each person pictured in the portraits through comparison to other individuals in the set. Participants learned the relative heights only of adjacent pairs in the set and then used transitive reasoning to generate a linear ranking of heights (e.g., "Matthew is taller than Thomas; Thomas is taller than Andrew; therefore Matthew is taller than Andrew"). During fMRI, participants recalled the approximate height of each individual based on these inferences. Using a predictive model based on the relative heights of the set of individuals, RSA revealed three brain regions in the right hemisphere that encoded this newly-learned representational space, located within the intraparietal sulcus, precuneus, and inferior frontal gyrus. These findings demonstrate the value of RSA for analyzing structure within patterns of activity and support theories asserting that logical reasoning recruits spatial processing mechanisms.


Assuntos
Mapeamento Encefálico/métodos , Lateralidade Funcional/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Pensamento/fisiologia , Adulto , Feminino , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Rememoração Mental/fisiologia , Lobo Parietal/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
3.
Cereb Cortex ; 27(8): 4277-4291, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28591837

RESUMO

Humans prioritize different semantic qualities of a complex stimulus depending on their behavioral goals. These semantic features are encoded in distributed neural populations, yet it is unclear how attention might operate across these distributed representations. To address this, we presented participants with naturalistic video clips of animals behaving in their natural environments while the participants attended to either behavior or taxonomy. We used models of representational geometry to investigate how attentional allocation affects the distributed neural representation of animal behavior and taxonomy. Attending to animal behavior transiently increased the discriminability of distributed population codes for observed actions in anterior intraparietal, pericentral, and ventral temporal cortices. Attending to animal taxonomy while viewing the same stimuli increased the discriminability of distributed animal category representations in ventral temporal cortex. For both tasks, attention selectively enhanced the discriminability of response patterns along behaviorally relevant dimensions. These findings suggest that behavioral goals alter how the brain extracts semantic features from the visual world. Attention effectively disentangles population responses for downstream read-out by sculpting representational geometry in late-stage perceptual areas.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Percepção de Movimento/fisiologia , Semântica , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Estatísticos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Reconhecimento Visual de Modelos/fisiologia
4.
J Neurosci ; 36(19): 5373-84, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170133

RESUMO

UNLABELLED: Common or folk knowledge about animals is dominated by three dimensions: (1) level of cognitive complexity or "animacy;" (2) dangerousness or "predacity;" and (3) size. We investigated the neural basis of the perceived dangerousness or aggressiveness of animals, which we refer to more generally as "perception of threat." Using functional magnetic resonance imaging (fMRI), we analyzed neural activity evoked by viewing images of animal categories that spanned the dissociable semantic dimensions of threat and taxonomic class. The results reveal a distributed network for perception of threat extending along the right superior temporal sulcus. We compared neural representational spaces with target representational spaces based on behavioral judgments and a computational model of early vision and found a processing pathway in which perceived threat emerges as a dominant dimension: whereas visual features predominate in early visual cortex and taxonomy in lateral occipital and ventral temporal cortices, these dimensions fall away progressively from posterior to anterior temporal cortices, leaving threat as the dominant explanatory variable. Our results suggest that the perception of threat in the human brain is associated with neural structures that underlie perception and cognition of social actions and intentions, suggesting a broader role for these regions than has been thought previously, one that includes the perception of potential threat from agents independent of their biological class. SIGNIFICANCE STATEMENT: For centuries, philosophers have wondered how the human mind organizes the world into meaningful categories and concepts. Today this question is at the core of cognitive science, but our focus has shifted to understanding how knowledge manifests in dynamic activity of neural systems in the human brain. This study advances the young field of empirical neuroepistemology by characterizing the neural systems engaged by an important dimension in our cognitive representation of the animal kingdom ontological subdomain: how the brain represents the perceived threat, dangerousness, or "predacity" of animals. Our findings reveal how activity for domain-specific knowledge of animals overlaps the social perception networks of the brain, suggesting domain-general mechanisms underlying the representation of conspecifics and other animals.


Assuntos
Encéfalo/fisiologia , Conectoma , Comportamento Predatório/classificação , Percepção Visual , Adulto , Anfíbios/fisiologia , Animais , Artrópodes/fisiologia , Encéfalo/citologia , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurônios/fisiologia , Répteis/fisiologia
5.
Epilepsia ; 58(3): 373-380, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935031

RESUMO

OBJECTIVES: Interictal epileptiform discharges (IEDs) have been linked to memory impairment, but the spatial and temporal dynamics of this relationship remain elusive. In the present study, we aim to systematically characterize the brain areas and times at which IEDs affect memory. METHODS: Eighty epilepsy patients participated in a delayed free recall task while undergoing intracranial electroencephalography (EEG) monitoring. We analyzed the locations and timing of IEDs relative to the behavioral data in order to measure their effects on memory. RESULTS: Overall IED rates did not correlate with task performance across subjects (r = 0.03, p = 0.8). However, at a finer temporal scale, within-subject memory was negatively affected by IEDs during the encoding and recall periods of the task but not during the rest and distractor periods (p < 0.01, p < 0.001, p = 0.3, and p = 0.8, respectively). The effects of IEDs during encoding and recall were stronger in the left hemisphere than in the right (p < 0.05). Of six brain areas analyzed, IEDs in the inferior-temporal, medial-temporal, and parietal areas significantly affected memory (false discovery rate < 0.05). SIGNIFICANCE: These findings reveal a network of brain areas sensitive to IEDs with key nodes in temporal as well as parietal lobes. They also demonstrate the time-dependent effects of IEDs in this network on memory.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Epilepsia/complicações , Epilepsia/patologia , Transtornos da Memória/etiologia , Rememoração Mental/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino , Transtornos da Memória/diagnóstico , Pessoa de Meia-Idade , Testes Neuropsicológicos , Curva ROC , Aprendizagem Verbal/fisiologia , Adulto Jovem
6.
Cereb Cortex ; 26(6): 2919-2934, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26980615

RESUMO

Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions.


Assuntos
Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Percepção Visual/fisiologia , Algoritmos , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Modelos Lineares , Masculino , Testes Neuropsicológicos , Adulto Jovem
7.
J Cogn Neurosci ; 27(4): 665-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25269114

RESUMO

Major theories for explaining the organization of semantic memory in the human brain are premised on the often-observed dichotomous dissociation between living and nonliving objects. Evidence from neuroimaging has been interpreted to suggest that this distinction is reflected in the functional topography of the ventral vision pathway as lateral-to-medial activation gradients. Recently, we observed that similar activation gradients also reflect differences among living stimuli consistent with the semantic dimension of graded animacy. Here, we address whether the salient dichotomous distinction between living and nonliving objects is actually reflected in observable measured brain activity or whether previous observations of a dichotomous dissociation were the illusory result of stimulus sampling biases. Using fMRI, we measured neural responses while participants viewed 10 animal species with high to low animacy and two inanimate categories. Representational similarity analysis of the activity in ventral vision cortex revealed a main axis of variation with high-animacy species maximally different from artifacts and with the least animate species closest to artifacts. Although the associated functional topography mirrored activation gradients observed for animate-inanimate contrasts, we found no evidence for a dichotomous dissociation. We conclude that a central organizing principle of human object vision corresponds to the graded psychological property of animacy with no clear distinction between living and nonliving stimuli. The lack of evidence for a dichotomous dissociation in the measured brain activity challenges theories based on this premise.


Assuntos
Mapeamento Encefálico , Ilusões Ópticas/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Semântica , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Análise de Componente Principal , Tempo de Reação/fisiologia , Córtex Visual/irrigação sanguínea , Vias Visuais/irrigação sanguínea
8.
J Neurosci ; 32(8): 2608-18, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22357845

RESUMO

Evidence of category specificity from neuroimaging in the human visual system is generally limited to a few relatively coarse categorical distinctions-e.g., faces versus bodies, or animals versus artifacts-leaving unknown the neural underpinnings of fine-grained category structure within these large domains. Here we use fMRI to explore brain activity for a set of categories within the animate domain, including six animal species-two each from three very different biological classes: primates, birds, and insects. Patterns of activity throughout ventral object vision cortex reflected the biological classes of the stimuli. Specifically, the abstract representational space-measured as dissimilarity matrices defined between species-specific multivariate patterns of brain activity-correlated strongly with behavioral judgments of biological similarity of the same stimuli. This biological class structure was uncorrelated with structure measured in retinotopic visual cortex, which correlated instead with a dissimilarity matrix defined by a model of V1 cortex for the same stimuli. Additionally, analysis of the shape of the similarity space in ventral regions provides evidence for a continuum in the abstract representational space-with primates at one end and insects at the other. Further investigation into the cortical topography of activity that contributes to this category structure reveals the partial engagement of brain systems active normally for inanimate objects in addition to animate regions.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Formação de Conceito/fisiologia , Julgamento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Classificação , Análise por Conglomerados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa/métodos , Tempo de Reação , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Adulto Jovem
9.
Neuroimage ; 78: 249-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23587693

RESUMO

How quickly can information about the neural response to a visual stimulus be detected in the hemodynamic response measured using fMRI? Multi-voxel pattern analysis (MVPA) uses pattern classification to detect subtle stimulus-specific information from patterns of responses among voxels, including information that cannot be detected in the average response across a given brain region. Here we use MVPA in combination with rapid temporal sampling of the fMRI signal to investigate the temporal evolution of classification accuracy and its relationship to the average regional hemodynamic response. In primary visual cortex (V1) stimulus information can be detected in the pattern of voxel responses more than a second before the average hemodynamic response of V1 deviates from baseline, and classification accuracy peaks before the peak of the average hemodynamic response. Both of these effects are restricted to early visual cortex, with higher level areas showing no difference or, in some cases, the opposite temporal relationship. These results have methodological implications for fMRI studies using MVPA because they demonstrate that information can be decoded from hemodynamic activity more quickly than previously assumed.


Assuntos
Mapeamento Encefálico/métodos , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Adulto , Feminino , Hemodinâmica , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa
10.
J Cogn Neurosci ; 24(4): 868-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22220728

RESUMO

A central goal in neuroscience is to interpret neural activation and, moreover, to do so in a way that captures universal principles by generalizing across individuals. Recent research in multivoxel pattern-based fMRI analysis has led to considerable success at decoding within individual subjects. However, the goal of being able to decode across subjects is still challenging: It has remained unclear what population-level regularities of neural representation there might be. Here, we present a novel and highly accurate solution to this problem, which decodes across subjects between eight different stimulus conditions. The key to finding this solution was questioning the seemingly obvious idea that neural decoding should work directly on neural activation patterns. On the contrary, to decode across subjects, it is beneficial to abstract away from subject-specific patterns of neural activity and, instead, to operate on the similarity relations between those patterns: Our new approach performs decoding purely within similarity space. These results demonstrate a hitherto unknown population-level regularity in neural representation and also reveal a striking convergence between our empirical findings in fMRI and discussions in the philosophy of mind addressing the problem of conceptual similarity across neural diversity.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Idioma , Resolução de Problemas/fisiologia , Estimulação Acústica , Adolescente , Adulto , Encéfalo/irrigação sanguínea , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Adulto Jovem
11.
Commun Biol ; 3(1): 17, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31925291

RESUMO

Mental models provide a cognitive framework allowing for spatially organizing information while reasoning about the world. However, transitive reasoning studies often rely on perception of stimuli that contain visible spatial features, allowing the possibility that associated neural representations are specific to inherently spatial content. Here, we test the hypothesis that neural representations of mental models generated through transitive reasoning rely on a frontoparietal network irrespective of the spatial nature of the stimulus content. Content within three models ranges from expressly visuospatial to abstract. All mental models participants generated were based on inferred relationships never directly observed. Here, using multivariate representational similarity analysis, we show that patterns representative of mental models were revealed in both superior parietal lobule and anterior prefrontal cortex and converged across stimulus types. These results support the conclusion that, independent of content, transitive reasoning using mental models relies on neural mechanisms associated with spatial cognition.


Assuntos
Encéfalo/fisiologia , Cognição , Modelos Psicológicos , Adulto , Mapeamento Encefálico , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
12.
NPJ Sci Learn ; 5: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435509

RESUMO

How does STEM knowledge learned in school change students' brains? Using fMRI, we presented photographs of real-world structures to engineering students with classroom-based knowledge and hands-on lab experience, examining how their brain activity differentiated them from their "novice" peers not pursuing engineering degrees. A data-driven MVPA and machine-learning approach revealed that neural response patterns of engineering students were convergent with each other and distinct from novices' when considering physical forces acting on the structures. Furthermore, informational network analysis demonstrated that the distinct neural response patterns of engineering students reflected relevant concept knowledge: learned categories of mechanical structures. Information about mechanical categories was predominantly represented in bilateral anterior ventral occipitotemporal regions. Importantly, mechanical categories were not explicitly referenced in the experiment, nor does visual similarity between stimuli account for mechanical category distinctions. The results demonstrate how learning abstract STEM concepts in the classroom influences neural representations of objects in the world.

13.
Nat Commun ; 10(1): 2027, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048694

RESUMO

Traditional tests of concept knowledge generate scores to assess how well a learner understands a concept. Here, we investigated whether patterns of brain activity collected during a concept knowledge task could be used to compute a neural 'score' to complement traditional scores of an individual's conceptual understanding. Using a novel data-driven multivariate neuroimaging approach-informational network analysis-we successfully derived a neural score from patterns of activity across the brain that predicted individual differences in multiple concept knowledge tasks in the physics and engineering domain. These tasks include an fMRI paradigm, as well as two other previously validated concept inventories. The informational network score outperformed alternative neural scores computed using data-driven neuroimaging methods, including multivariate representational similarity analysis. This technique could be applied to quantify concept knowledge in a wide range of domains, including classroom-based education research, machine learning, and other areas of cognitive science.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Educação/métodos , Individualidade , Aprendizagem/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Currículo , Engenharia/educação , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Matemática/educação , Ciência/educação , Estudantes/psicologia , Tecnologia/educação , Adulto Jovem
14.
Brain Lang ; 183: 54-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29940339

RESUMO

In an fMRI investigation of the neural representation of word frequency and animacy, participants read high- and low-frequency words within living and nonliving semantic categories. Both temporal (left fusiform gyrus) and parietal (left supramarginal gyrus) activation patterns differentiated between animal and tool words after controlling for frequency. Activation patterns in a smaller ventral temporal region, a subset of the voxels identified in the animacy contrast, differentiated between high- and low-frequency words after controlling for animacy. Activation patterns in the larger temporal region distinguished between high- and low-frequency words just as well as patterns within the smaller region. However, in analyses by animacy category, frequency effects in these temporal regions were significant only for tool, not for animal, words. Thus, lexical word frequency information and semantic animacy category information are conjointly represented in left fusiform gyrus activation patterns for some, but not all, concrete nouns.


Assuntos
Idioma , Lobo Parietal/diagnóstico por imagem , Leitura , Lobo Temporal/diagnóstico por imagem , Adolescente , Adulto , Mapeamento Encefálico , Cognição , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Adulto Jovem
15.
Front Neurosci ; 12: 437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042652

RESUMO

Encoding models for mapping voxelwise semantic tuning are typically estimated separately for each individual, limiting their generalizability. In the current report, we develop a method for estimating semantic encoding models that generalize across individuals. Functional MRI was used to measure brain responses while participants freely viewed a naturalistic audiovisual movie. Word embeddings capturing agent-, action-, object-, and scene-related semantic content were assigned to each imaging volume based on an annotation of the film. We constructed both conventional within-subject semantic encoding models and between-subject models where the model was trained on a subset of participants and validated on a left-out participant. Between-subject models were trained using cortical surface-based anatomical normalization or surface-based whole-cortex hyperalignment. We used hyperalignment to project group data into an individual's unique anatomical space via a common representational space, thus leveraging a larger volume of data for out-of-sample prediction while preserving the individual's fine-grained functional-anatomical idiosyncrasies. Our findings demonstrate that anatomical normalization degrades the spatial specificity of between-subject encoding models relative to within-subject models. Hyperalignment, on the other hand, recovers the spatial specificity of semantic tuning lost during anatomical normalization, and yields model performance exceeding that of within-subject models.

16.
Cognition ; 103(1): 1-22, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16616076

RESUMO

Many concepts have stereotypes. This leaves open the question of whether concepts are stereotypes. It has been argued elsewhere that theories that identify concepts with their stereotypes or with stereotypical properties of their instances (e.g., Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Ed.), Cognition and Categorization. Hillsdale, NJ: Lawrence Erlbaum Associates; Smith, E. E., Medin, D. L. (1981). Categories and Concepts. Cambridge, MA: Harvard University Press.) fail to provide an adequate account of the compositionality of concepts (Fodor, J., Lepore, E. (1996). The red herring and the pet fish: Why concepts still cannot be prototypes. Cognition, 58, 253-270.; Fodor, J. (1998). Concepts: Where cognitive science went wrong. New York, NY: Oxford University Press.). This paper extends this argument and reports an experiment suggesting that participants do not assume, even as a default strategy, that complex concepts inherit the stereotypes of their constituents. Thus propositions such as "Baby ducks have webbed feet" were judged to be less likely to be true than propositions like "Ducks have webbed feet." Moreover, manipulation of the type and number of noun phrase modifiers revealed a systematic departure from the unmodified noun's stereotype both with the addition of stereotypical modifiers ("Quacking ducks have webbed feet" versus "Ducks have webbed feet") and with the addition of a second modifier ("Baby Peruvian ducks have webbed feet" versus "Baby ducks have webbed feet"). Thus, in the general case the stereotypical properties of a head noun are systematically discounted when that head noun combines with modifiers. This effect represents a general principle of conceptual combination that argues against the inheritance of stereotypical features of concepts as a default strategy. Instead, we advocate a model of conceptual combination where concepts remain inert under combination, supported by a separate machinery that introduces pragmatic and knowledge-dependent inferences.


Assuntos
Estereotipagem , Adulto , Feminino , Humanos , Julgamento , Masculino
17.
Front Neuroinform ; 10: 27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499741

RESUMO

Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA.

19.
Comput Math Methods Med ; 2012: 634165, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22548125

RESUMO

We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA) suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of variables (i.e., voxels) that are themselves grouped into regions of interest (ROIs). Like DA, MUSUBADA (1) assigns observations to predefined categories, (2) gives factorial maps displaying observations and categories, and (3) optimally assigns observations to categories. MUSUBADA handles cases with more variables than observations and can project portions of the data table (e.g., subtables, which can represent participants or ROIs) on the factorial maps. Therefore MUSUBADA can analyze datasets with different voxel numbers per participant and, so does not require spatial normalization. MUSUBADA statistical inferences are implemented with cross-validation techniques (e.g., jackknife and bootstrap), its performance is evaluated with confusion matrices (for fixed and random models) and represented with prediction, tolerance, and confidence intervals. We present an example where we predict the image categories (houses, shoes, chairs, and human, monkey, dog, faces,) of images watched by participants whose brains were scanned. This example corresponds to a DA question in which the data table is made of subtables (one per subject) and with more variables than observations.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/psicologia , Animais , Interpretação Estatística de Dados , Análise Discriminante , Cães , Face , Feminino , Haplorrinos , Humanos , Masculino
20.
Neuron ; 72(2): 404-16, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-22017997

RESUMO

We present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response tunings. We map response-pattern vectors, measured with fMRI, from individual subjects' voxel spaces into this common model space using a new method, "hyperalignment." Hyperalignment parameters based on responses during one experiment--movie viewing--identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments. Between-subject classification (BSC, multivariate pattern classification based on other subjects' data) of response-pattern vectors in common model space greatly exceeded BSC of anatomically aligned responses and matched within-subject classification. Results indicate that population codes for complex visual stimuli in VT cortex are based on response-tuning functions that are common across individuals.


Assuntos
Mapeamento Encefálico/métodos , Neurônios/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Neuroimagem Funcional , Humanos , Processamento de Imagem Assistida por Computador , Modelos Neurológicos , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA