RESUMO
Protection of the environment from radiation fundamentally relies on dose assessments for non-human biota. Many of these dose assessments use measured or predicted concentrations of radionuclides in soil or water combined with Concentration Ratios (CRs) to estimate whole body concentrations in animals and plants, yet there is a paucity of CR data relative to the vast number of potential taxa and radioactive contaminants in the environment and their taxon-specific ecosystems. Because there are many taxa each having very different behaviors and biology, and there are many possible bioavailable radionuclides, CRs have the potential to vary by orders-of-magnitude, as often seen in published data. Given the diversity of taxa, the International Commission on Radiological Protection (ICRP) has selected 12 non-human biota as reference animals and plants (RAPs), while the U.S. Department of Energy (DOE) uses the non-taxon specific categories of terrestrial, riparian, and aquatic animals. The question we examine here, in part, is: are these RAPs and categorizations sufficient to adequately protect all species given the broad diversity of animals in a region? To explore this question, we utilize an Allometric-Kinetic (A-K) model to calculate radionuclide-specific CRs for common animal classes, which are then further subcategorized into herbivores, omnivores, carnivores, and invertebrate detritivores. Comparisons in CRs among animal classes exhibited only small differences, but there was order of magnitude differences between herbivores, carnivores, and especially detritivores, for many radionuclides of interest. These findings suggest that the ICRP RAPs and the DOE categories are reasonable, but their accuracy could be improved by including sub-categories related to animal dietary ecology and biology. Finally, comparisons of A-K model predicted CR values to published CRs show order-of-magnitude variations, providing justification for additional studies of animal assimilation across radionuclides, environmental conditions, and animal classes.
Assuntos
Monitoramento de Radiação , Animais , Ecossistema , Preferências Alimentares , Radioisótopos/análise , PlantasRESUMO
Chelonians (turtles, tortoises, and sea turtles; hereafter, turtles) inhabit a wide variety of ecosystems that are currently, or have the potential in the future to become, radioactively contaminated. Because they are long-lived, turtles may uniquely accumulate significant amounts of the radionuclides, especially those with long half-lives and are less environmentally mobile. Further, turtle shells are covered by scutes made of keratin. For many turtle taxa, each year, keratin grows sequentially creating annual growth rings or layers. Theoretically, analysis of these scute layers for radionuclides could provide a history of the radioactivity levels in the environment, yet there are few previously published studies focused on the dynamics of radionuclide intake in turtles. Using established biochemical and ecological principles, we developed an allometric-kinetic model to establish relationships between the radionuclide concentrations in turtles and the environment they inhabit. Specifically, we calculated Concentration Ratios (CRs - ratio of radionuclide concentration in the turtle divided by the concentration in the soil, sediment, or water) for long-lived radionuclides of uranium and plutonium for freshwater turtles, tortoises, and sea turtles. These CRs allowed prediction of environmental concentrations based on measured concentrations within turtles or vice-versa. We validated model-calculated CR values through comparison with published CR values for representative organisms, and the uncertainty in each of the model parameters was propagated through the CR calculation using Monte Carlo techniques. Results show an accuracy within a factor of three for most CR comparisons though the difference for plutonium was larger with a CR ratio of about 200 times for sea turtles, driven largely by the uncertainty of the solubility of plutonium in sea water.
Assuntos
Monitoramento de Radiação , Tartarugas , Contaminação Radioativa da Água , Animais , Ecossistema , Queratinas , Plutônio , Contaminação Radioativa da Água/estatística & dados numéricosRESUMO
Examination of avian eggshell at the Old Town archaeological site in Southwestern New Mexico, United States of America, indicates that scarlet macaw (Ara macao) breeding occurred during the Classic Mimbres period (early AD 1100s). Current archaeological and archaeogenomic evidence from throughout the American Southwest/Mexican Northwest (SW/NW) suggests that Indigenous people bred scarlet macaws at an unknown location(s) between AD 900 and 1200 and likely again at the northwestern Mexico site of Paquimé post-AD 1275. However, there is a lack of direct evidence for breeding, or the location(s) of scarlet macaw breeding itself, within this area. This research, for the first time, provides evidence of scarlet macaw breeding using scanning electron microscopy of eggshells from Old Town.
RESUMO
Chelonians (turtles, tortoises, and sea turtles) grow scute keratin in sequential layers over time. Once formed, scute keratin acts as an inert reservoir of environmental information. For chelonians inhabiting areas with legacy or modern nuclear activities, their scute has the potential to act as a time-stamped record of radionuclide contamination in the environment. Here, we measure bulk (i.e. homogenized scute) and sequential samples of chelonian scute from the Republic of the Marshall Islands and throughout the United States of America, including at the Barry M. Goldwater Air Force Range, southwestern Utah, the Savannah River Site, and the Oak Ridge Reservation. We identify legacy uranium (235U and 236U) contamination in bulk and sequential chelonian scute that matches known nuclear histories at these locations during the 20th century. Our results confirm that chelonians bioaccumulate uranium radionuclides and do so sequentially over time. This technique provides both a time series approach for reconstructing nuclear histories from significant past and present contexts throughout the world and the ability to use chelonians for long-term environmental monitoring programs (e.g. sea turtles at Enewetok and Bikini Atolls in the Republic of the Marshall Islands and in Japan near the Fukushima Daiichi reactors).
RESUMO
A consequence of over 400 years of human exploitation of Galápagos tortoises (Chelonoidis niger ssp.) is the extinction of several subspecies and the decimation of others. As humans captured, killed, and/or removed tortoises for food, oil, museums, and zoos, they also colonized the archipelago resulting in the introduction of invasive plants, animals, and manipulated landscapes for farming, ranching, and infrastructure. Given current conservation and revitalization efforts for tortoises and their habitats, here we investigate nineteenth and twentieth century Galápagos tortoise dietary ecology using museum and archaeological specimens coupled with analysis of carbon (δ13Ccollagen and δ13Capatite), nitrogen (δ15N), hydrogen (δD) and oxygen (δ18Oapatite) stable isotopes and radiocarbon dating. We identify that Galápagos tortoise diets vary between and within islands over time, and that long-term anthropogenic impacts influenced change in tortoise stable isotope ecology by using 57 individual tortoises from 10 different subspecies collected between 1833 and 1967-a 134-year period. On lower elevation islands, which are often hotter and drier, tortoises tend to consume more C4 vegetation (cacti and grasses). Our research suggests human exploitation of tortoises and anthropogenic impacts on vegetation contributed to the extinction of the Floreana Island tortoise (C. n. niger) in the 1850s.
Assuntos
Tartarugas , Animais , Humanos , Níger , Ecologia , Ecossistema , AgriculturaRESUMO
Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.