Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 74(2): 180-188, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33983371

RESUMO

BACKGROUND: Pyronaridine-artesunate (PA) is a registered artemisinin-based combination therapy, potentially useful for mass drug administration campaigns. However, further data are needed to evaluate its efficacy, safety and tolerability as full or incomplete treatment in asymptomatic Plasmodium falciparum-infected individuals. METHODS: This phase II, multi-center, open label, randomized clinical trial was conducted in The Gambia and Zambia. Participants with microscopically confirmed asymptomatic P. falciparum infection were randomly assigned (1:1:1) to receive a 3-day, 2-day, or 1-day treatment regimen of PA (180:60 mg), dosed according to bodyweight. The primary efficacy outcome was polymerase chain reaction (PCR)-adjusted adequate parasitological response (APR) at day 28 in the per-protocol population. RESULTS: A total of 303 participants were randomized. Day 28 PCR-adjusted APR was 100% for both the 3-day (98/98) and 2-day regimens (96/96), and 96.8% (89/94) for the 1-day regimen. Efficacy was maintained at 100% until day 63 for the 3-day and 2-day regimens but declined to 94.4% (84/89) with the 1-day regimen. Adverse event frequency was similar between the 3-day (51.5% [52/101]), 2-day (52.5% [52/99]), and 1-day (54.4% [56/103]) regimens; the majority of adverse events were of grade 1 or 2 severity (85% [136/160]). Asymptomatic, transient increases (>3 times the upper limit of normal) in alanine aminotransferase/aspartate aminotransferase were observed for 6/301 (2.0%) participants. CONCLUSIONS: PA had high efficacy and good tolerability in asymptomatic P. falciparum-infected individuals, with similar efficacy for the full 3-day and incomplete 2-day regimens. Although good adherence to the 3-day regimen should be encouraged, these results support the further investigation of PA for mass drug administration campaigns. CLINICAL TRIALS REGISTRATION: NCT03814616.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Antimaláricos/efeitos adversos , Artesunato/uso terapêutico , Combinação de Medicamentos , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Naftiridinas , Plasmodium falciparum , Resultado do Tratamento
2.
Malar J ; 20(1): 198, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902611

RESUMO

BACKGROUND: The World Health Organization (WHO) recommends consideration of mass drug administration (MDA) for malaria control in low-endemic settings approaching elimination. However, MDA remains a controversial strategy, as multiple individual, social, and operational factors have shown to affect its acceptability at local levels. This is further complicated by inconsistent definitions of key indicators derived from individual and community involvement-coverage, adherence, and compliance-that cast doubts about the actual and potential epidemiological impact of MDA on disease control and elimination. This study aimed to identify limitations and enabling factors impacting involvement at different stages of a large cluster-randomized trial assessing the effect of combining dihydroartemisinin-piperaquine (DP) and ivermectin (IVM) in malaria transmission in The Gambia. METHODS: This social science study used a mixed-methods approach. Qualitative data were collected in intervention and control villages through ethnographic methods, including in-depth interviews (IDIs), focus group discussions (FGDs), and participant observation conducted with trial participants and decliners, community leaders, and field staff. A cross-sectional survey was conducted in the intervention villages after the first year of MDA. Both strands of the study explored malaria knowledge and opinions, social dynamics influencing decision-making, as well as perceived risks, burdens, and benefits associated with this MDA. RESULTS: 157 IDIs and 11 FGDs were conducted, and 864 respondents were included in the survey. Barriers and enabling factors to involvement were differentially influential at the various stages of the MDA. Issues of social influence, concerns regarding secondary effects of the medication, costs associated with malaria, and acceptability of the implementing organization, among other factors, differently affected the decision-making processes throughout the trial. Rather than a linear trajectory, involvement in this MDA trial was subjected to multiple revaluations from enrolment and consent to medicine intake and adherence to treatment. CONCLUSIONS: This study went beyond the individual factors often associated with coverage and adherence, and found that nuanced social dynamics greatly influence the decision-making process at all phases of the trial. These issues need to be consider for MDA implementation strategies and inform discussions about more accurate ways of reporting on critical effectiveness indicators.


Assuntos
Antimaláricos/administração & dosagem , Erradicação de Doenças/estatística & dados numéricos , Consentimento Livre e Esclarecido/estatística & dados numéricos , Ivermectina/administração & dosagem , Malária/prevenção & controle , Administração Massiva de Medicamentos/estatística & dados numéricos , Adesão à Medicação/estatística & dados numéricos , Adolescente , Adulto , Estudos Transversais , Feminino , Gâmbia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Commun Med (Lond) ; 4(1): 97, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778226

RESUMO

BACKGROUND: In 2022 the WHO recommended the discretionary expansion of the eligible age range for seasonal malaria chemoprevention (SMC) to children older than 4 years. Older children are at lower risk of clinical disease and severe malaria so there has been uncertainty about the cost-benefit for national control programmes. However, emerging evidence from laboratory studies suggests protecting school-age children reduces the infectious reservoir for malaria and may significantly impact on transmission. This study aimed to assess whether these effects were detectable in the context of a routinely delivered SMC programme. METHODS: In 2021 the Gambia extended the maximum eligible age for SMC from 4 to 9 years. We conducted a prospective population cohort study over the 2021 malaria transmission season covering 2210 inhabitants of 10 communities in the Upper River Region, and used a household-level mixed modelling approach to quantify impacts of SMC on malaria transmission. RESULTS: We demonstrate that the hazard of clinical malaria in older participants aged 10+ years ineligible for SMC decreases by 20% for each additional SMC round per child 0-9 years in the same household. Older inhabitants also benefit from reduced risk of asymptomatic infections in high SMC coverage households. Spatial autoregression tests show impacts are highly localised, with no detectable spillover from nearby households. CONCLUSIONS: Evidence for the transmission-reducing effects of extended-age SMC from routine programmes implemented at scale has been previously limited. Here we demonstrate benefits to the entire household, indicating such programmes may be more cost-effective than previously estimated.


Seasonal malaria chemoprevention (SMC) is the provision of monthly, preventative, anti-malaria medication to young children at times when they are most at risk of severe disease. Recently the World Health Organisation recommended expanding SMC to children older than 4 years. Older children with malaria typically remain symptomless so the advantages were unclear. However, laboratory evidence suggests this group continues to transmit malaria to others. We conducted a population study in 2021 in 10 communities in the Gambia where SMC was extended to all children up to 9 years of age for the first time. We found household members aged over 9 years were less likely to get clinical disease when most young children in the same household did receive SMC. This suggests an added protection of SMC for those who do not receive it, potentially increasing cost-effectiveness.

4.
One Health ; 18: 100717, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576541

RESUMO

Robust surveillance of Histoplasma species is warranted in endemic regions, including investigation of community-level transmission dynamics. This cross-sectional study explored anti-Histoplasma antibody seroprevalence and risk factors for exposure in a general population in Upper River Region (URR), The Gambia. Study participants were recruited (December 2022-March 2023) by random household sampling across 12 Enumeration Areas (EAs) of URR. A questionnaire and clinical examination were performed; exploring demographic, clinical and environmental risk factors for Histoplasma exposure. One venous blood sample per participant was subject to IMMY Latex Agglutination Histoplasma test to determine presence of a recent IgM response to Histoplasma. Seropositivity risk factors were explored by multi-level, multivariable logistic regression analysis. The study population (n = 298) aged 5-83 years, demonstrated a positively skewed age distribution and comprised 55.4% females. An apparent seroprevalence of 18.8% (n = 56/298, 95% CI 14.5-23.7%) was measured using the LAT. A multivariable model demonstrated increased odds of Histoplasma seropositivity amongst female participants (OR = 2.41 95% CI 1.14-5.10); and participants reporting involvement in animal manure management (OR = 4.21 95% CI 1.38-12.90), and management of domestic animals inside the compound at night during the dry season (OR = 10.72 95% CI 2.02-56.83). Increasing age (OR = 0.96 95% CI 0.93-0.98) was associated with decreased odds of seropositivity. Clustering at EA level was responsible for 17.2% of seropositivity variance. The study indicates frequent recent Histoplasma exposure and presents plausible demographic and environmental risk factors for seropositivity. Histoplasma spp. characterisation at this human-animal-environment interface is warranted, to determine public health implications of environmental reservoirs in The Gambia. The study was supported by Wellcome Trust (206,638/Z/17/Z to CES) and a University of Liverpool-funded PhD studentship (to TRC).

5.
Open Forum Infect Dis ; 11(Suppl 1): S84-S90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532959

RESUMO

Background: The Gambia, located in West Africa, is one of 7 country sites conducting the Enterics for Global Health (EFGH) Shigella Surveillance Study to establish incidence and consequence of Shigella-associated medically attended diarrhea among children 6-35 months old. Methods: Here we describe the study site and research experience, sociodemographic characteristics of the study catchment area, facilities of recruitment for diarrhea case surveillance, and known care-seeking behavior for diarrheal illness. We also describe The Gambia's healthcare system and financing, current vaccine schedule and Shigella vaccine adaptation, local diarrhea management guidelines and challenges, and antibiotic resistance patterns in the region. Conclusions: The EFGH study in The Gambia will contribute to the multisite network of Shigella surveillance study and prepare the site for future vaccine trials. In addition, the data produced will inform policy makers about prevention strategies and upcoming Shigella vaccine studies among children in this setting.

6.
Open Forum Infect Dis ; 11(Suppl 1): S17-S24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532956

RESUMO

Background: Accurate estimation of diarrhea incidence from facility-based surveillance requires estimating the population at risk and accounting for case patients who do not seek care. The Enterics for Global Health (EFGH) Shigella surveillance study will characterize population denominators and healthcare-seeking behavior proportions to calculate incidence rates of Shigella diarrhea in children aged 6-35 months across 7 sites in Africa, Asia, and Latin America. Methods: The Enterics for Global Health (EFGH) Shigella surveillance study will use a hybrid surveillance design, supplementing facility-based surveillance with population-based surveys to estimate population size and the proportion of children with diarrhea brought for care at EFGH health facilities. Continuous data collection over a 24 month period captures seasonality and ensures representative sampling of the population at risk during the period of facility-based enrollments. Study catchment areas are broken into randomized clusters, each sized to be feasibly enumerated by individual field teams. Conclusions: The methods presented herein aim to minimize the challenges associated with hybrid surveillance, such as poor parity between survey area coverage and facility coverage, population fluctuations, seasonal variability, and adjustments to care-seeking behavior.

7.
Open Forum Infect Dis ; 11(Suppl 1): S48-S57, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532952

RESUMO

Background: Rigorous data management systems and planning are essential to successful research projects, especially for large, multicountry consortium studies involving partnerships across multiple institutions. Here we describe the development and implementation of data management systems and procedures for the Enterics For Global Health (EFGH) Shigella surveillance study-a 7-country diarrhea surveillance study that will conduct facility-based surveillance concurrent with population-based enumeration and a health care utilization survey to estimate the incidence of Shigella--associated diarrhea in children 6 to 35 months old. Methods: The goals of EFGH data management are to utilize the knowledge and experience of consortium members to collect high-quality data and ensure equity in access and decision-making. During the planning phase before study initiation, a working group of representatives from each EFGH country site, the coordination team, and other partners met regularly to develop the data management systems for the study. Results: This resulted in the Data Management Plan, which included selecting REDCap and SurveyCTO as the primary database systems. Consequently, we laid out procedures for data processing and storage, study monitoring and reporting, data quality control and assurance activities, and data access. The data management system and associated real-time visualizations allow for rapid data cleaning activities and progress monitoring and will enable quicker time to analysis. Conclusions: Experiences from this study will contribute toward enriching the sparse landscape of data management methods publications and serve as a case study for future studies seeking to collect and manage data consistently and rigorously while maintaining equitable access to and control of data.

8.
Open Forum Infect Dis ; 11(Suppl 1): S6-S16, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532963

RESUMO

Background: Shigella is a leading cause of acute watery diarrhea, dysentery, and diarrhea-attributed linear growth faltering, a precursor to stunting and lifelong morbidity. Several promising Shigella vaccines are in development and field efficacy trials will require a consortium of potential vaccine trial sites with up-to-date Shigella diarrhea incidence data. Methods: The Enterics for Global Health (EFGH) Shigella surveillance study will employ facility-based enrollment of diarrhea cases aged 6-35 months with 3 months of follow-up to establish incidence rates and document clinical, anthropometric, and financial consequences of Shigella diarrhea at 7 country sites (Mali, Kenya, The Gambia, Malawi, Bangladesh, Pakistan, and Peru). Over a 24-month period between 2022 and 2024, the EFGH study aims to enroll 9800 children (1400 per country site) between 6 and 35 months of age who present to local health facilities with diarrhea. Shigella species (spp.) will be identified and serotyped from rectal swabs by conventional microbiologic methods and quantitative polymerase chain reaction. Shigella spp. isolates will undergo serotyping and antimicrobial susceptibility testing. Incorporating population and healthcare utilization estimates from contemporaneous household sampling in the catchment areas of enrollment facilities, we will estimate Shigella diarrhea incidence rates. Conclusions: This multicountry surveillance network will provide key incidence data needed to design Shigella vaccine trials and strengthen readiness for potential trial implementation. Data collected in EFGH will inform policy makers about the relative importance of this vaccine-preventable disease, accelerating the time to vaccine availability and uptake among children in high-burden settings.

9.
Open Forum Infect Dis ; 11(Suppl 1): S41-S47, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532961

RESUMO

Background: Comparative costs of public health interventions provide valuable data for decision making. However, the availability of comprehensive and context-specific costs is often limited. The Enterics for Global Health (EFGH) Shigella surveillance study-a facility-based diarrhea surveillance study across 7 countries-aims to generate evidence on health system and household costs associated with medically attended Shigella diarrhea in children. Methods: EFGH working groups comprising representatives from each country (Bangladesh, Kenya, Malawi, Mali, Pakistan, Peru, and The Gambia) developed the study methods. Over a 24-month surveillance period, facility-based surveys will collect data on resource use for the medical treatment of an estimated 9800 children aged 6-35 months with diarrhea. Through these surveys, we will describe and quantify medical resources used in the treatment of diarrhea (eg, medication, supplies, and provider salaries), nonmedical resources (eg, travel costs to the facility), and the amount of caregiver time lost from work to care for their sick child. To assign costs to each identified resource, we will use a combination of caregiver interviews, national medical price lists, and databases from the World Health Organization and the International Labor Organization. Our primary outcome will be the estimated cost per inpatient and outpatient episode of medically attended Shigella diarrhea treatment across countries, levels of care, and illness severity. We will conduct sensitivity and scenario analysis to determine how unit costs vary across scenarios. Conclusions: Results from this study will contribute to the existing body of literature on diarrhea costing and inform future policy decisions related to investments in preventive strategies for Shigella.

10.
Lancet Infect Dis ; 22(4): 519-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919831

RESUMO

BACKGROUND: Although the malaria burden has substantially decreased in sub-Saharan Africa, progress has stalled. We assessed whether mass administration of ivermectin (a mosquitocidal drug) and dihydroartemisinin-piperaquine (an antimalarial treatment) reduces malaria in The Gambia, an area with high coverage of standard control interventions. METHODS: This open-label, cluster-randomised controlled trial was done in the Upper River region of eastern Gambia. Villages with a baseline Plasmodium falciparum prevalence of 7-46% (all ages) and separated from each other by at least 3 km to reduce vector spillover were selected. Inclusion criteria were age and anthropometry (for ivermectin, weight of ≥15 kg; for dihydroartemisinin-piperaquine, participants older than 6 months); willingness to comply with trial procedures; and written informed consent. Villages were randomised (1:1) to either the intervention (ivermectin [orally at 300-400 µg/kg per day for 3 consecutive days] and dihydroartemisinin-piperaquine [orally depending on bodyweight] plus standard control interventions) or the control group (standard control interventions) using computer-based randomisation. Laboratory staff were masked to the origin of samples. In the intervention group, three rounds of mass drug administration once per month with ivermectin and dihydroartemisinin-piperaquine were given during two malaria transmission seasons from Aug 27 to Oct 31, 2018, and from July 15 to Sept 30, 2019. Primary outcomes were malaria prevalence by qPCR at the end of the second intervention year in November 2019, and Anopheles gambiae (s l) parous rate, analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03576313. FINDINGS: Between Nov 20 and Dec 7, 2017, 47 villages were screened for eligibility in the study. 15 were excluded because the baseline malaria prevalence was less than 7% (figure 1). 32 villages were enrolled and randomised to either the intervention or control group (n=16 in each group). The study population was 10 638, of which 4939 (46%) participants were in intervention villages. Coverage for dihydroartemisinin-piperaquine was between 49·0% and 58·4% in 2018, and between 76·1% and 86·0% in 2019; for ivermectin, coverage was between 46·9% and 52·2% in 2018, and between 71·7% and 82·9% in 2019. In November 2019, malaria prevalence was 12·8% (324 of 2529) in the control group and 5·1% (140 of 2722) in the intervention group (odds ratio [OR] 0·30, 95% CI 0·16-0·59; p<0·001). A gambiae (s l) parous rate was 83·1% (552 of 664) in the control group and 81·7% (441 of 540) in the intervention group (0·90, 0·66-1·25; p=0·537). In 2019, adverse events were recorded in 386 (9·7%) of 3991 participants in round one, 201 (5·4%) of 3750 in round two, and 168 (4·5%) of 3752 in round three. None of the 11 serious adverse events were related to the intervention. INTERPRETATION: The intervention was safe and well tolerated. In an area with high coverage of standard control interventions, mass drug administration of ivermectin and dihydroartemisinin-piperaquine significantly reduced malaria prevalence; however, no effect of ivermectin on vector parous rate was observed. FUNDING: Joint Global Health Trials Scheme. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Artemisininas , Malária , Quinolinas , Animais , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Gâmbia/epidemiologia , Humanos , Ivermectina/administração & dosagem , Malária/prevenção & controle , Administração Massiva de Medicamentos , Mosquitos Vetores , Piperazinas , Quinolinas/administração & dosagem
11.
Parasit Vectors ; 15(1): 435, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397132

RESUMO

BACKGROUND: Vector control interventions in sub-Saharan Africa rely on insecticide-treated nets and indoor residual spraying. Insecticide resistance, poor coverage of interventions, poor quality nets and changes in vector behavior threaten the effectiveness of these interventions and, consequently, alternative tools are needed. Mosquitoes die after feeding on humans or animals treated with ivermectin (IVM). Mass drug administration (MDA) with IVM could reduce vector survival and decrease malaria transmission. The entomological impact of MDA of combined IVM and dihydroartemisinin-piperaquine was assessed in a community-based, cluster-randomized trial. METHODS: A cluster-randomized trial was implemented in 2018 and 2019 in 32 villages in the Upper River Region, The Gambia. The with the inhabitants of 16 intervention villages eligible to receive three monthly rounds of MDA at the beginning of the malaria transmission season. Entomological surveillance with light traps and human landing catches (HLC) was carried out during a 7- to 14-day period after each round of MDA, and then monthly until the end of the year. The mosquitocidal effect of IVM was determined by direct membrane feeding assays. RESULTS: Of the 15,017 mosquitoes collected during the study period, 99.65% (n = 14,965) were Anopheles gambiae sensu lato (An. gambiae s.l.), comprising Anopheles arabiensis (56.2%), Anopheles coluzzii (24.5%), Anopheles gambiae sensu stricto (An. gembiae s.s.; 16.0%) and Anopheles funestus sensu lato (An. funestus s.l.; 0.35%). No effect of the intervention on vector parity was observed. Vector density determined on light trap collections was significantly lower in the intervention villages in 2019 (adjusted incidence rate ratio: 0.39; 95% confidence interval [CI]: 0.20, 0.74; P = 0.005) but not in 2018. However, vector density determined in HLC collections was similar in both the intervention and control villages. The entomological inoculation rate was significantly lower in the intervention villages than in the control villages (odds ratio: 0.36, 95% CI: 0.19, 0.70; P = 0·003). Mosquito mortality was significantly higher when blood fed on IVM-treated individuals up to 21 days post-treatment, particularly in adults and individuals with a higher body mass index. CONCLUSION: Mass drug administration with IVM decreased vector density and the entomological inoculation rate while the effect on vector parity was less clear. Survival of mosquitoes fed on blood collected from IVM-treated individuals was significantly lower than that in mosquitoes which fed on controls. The influence of host characteristics on mosquito survivorship indicated that dose optimization could improve IVM efficacy. Future detailed entomological evaluation trials in which IVM is administered as stand-alone intervention may elucidate the contribution of this drug to the observed reduction in transmission.


Assuntos
Anopheles , Artemisininas , Ivermectina , Malária , Administração Massiva de Medicamentos , Adulto , Animais , Humanos , Anopheles/efeitos dos fármacos , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Gâmbia/epidemiologia , Ivermectina/administração & dosagem , Ivermectina/uso terapêutico , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos
12.
JMIR Res Protoc ; 9(11): e20904, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211022

RESUMO

BACKGROUND: With a decline in malaria burden, innovative interventions and tools are required to reduce malaria transmission further. Mass drug administration (MDA) of artemisinin-based combination therapy (ACT) has been identified as a potential tool to further reduce malaria transmission, where coverage of vector control interventions is already high. However, the impact is limited in time. Combining an ACT with an endectocide treatment that is able to reduce vector survival, such as ivermectin (IVM), could increase the impact of MDA and offer a new tool to reduce malaria transmission. OBJECTIVE: The study objective is to evaluate the impact of MDA with IVM plus dihydroartemisinin-piperaquine (DP) on malaria transmission in an area with high coverage of malaria control interventions. METHODS: The study is a cluster randomized trial in the Upper River Region of The Gambia and included 32 villages (16 control and 16 intervention). A buffer zone of ~2 km was created around all intervention clusters. MDA with IVM plus DP was implemented in all intervention villages and the buffer zones; control villages received standard malaria interventions according to the Gambian National Malaria Control Program plans. RESULTS: The MDA campaigns were carried out from August to October 2018 for the first year and from July to September 2019 for the second year. Statistical analysis will commence once the database is completed, cleaned, and locked. CONCLUSIONS: This is the first cluster randomized clinical trial of MDA with IVM plus DP. The results will provide evidence on the impact of MDA with IVM plus DP on malaria transmission. TRIAL REGISTRATION: ClinicalTrials.gov NCT03576313; https://clinicaltrials.gov/ct2/show/NCT03576313. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/20904.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA