Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Pharmacol Res ; 206: 107296, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971269

RESUMO

The activity of sirtuin 1 (SIRT1, a member of the NAD+-dependent deacetylases family) decreases during aging as NAD+ levels naturally decline, thus increasing the risk of several age-associated diseases. Several sirtuin-activating compounds (STACs) have been developed to counteract the age-associated reduction in SIRT1 activity, and some of them are currently under development in clinical trials. STACs induce SIRT1 activation, either through allosteric activation of the enzyme in the presence of NAD+, or by increasing NAD+ levels by inhibiting its degradation or by supplying a key precursor in biosynthesis. In this study, we have identified (E)-2'-des-methyl sulindac analogues as a novel class of STACs that act also in the absence of NAD+, a peculiar behavior demonstrated through enzymatic and mass spectrometry experiments, both in vitro and in cell lines. The activation of the SIRT1 pathway was confirmed in vivo through gene expression and metabolomics analysis. Our data suggest that these compounds could serve as candidate leads for a novel therapeutic strategy aimed at addressing a key metabolic deficiency that may contribute to metabolic and age-associated diseases.


Assuntos
NAD , Sirtuína 1 , Sirtuína 1/metabolismo , NAD/metabolismo , Animais , Humanos , Ativadores de Enzimas/farmacologia , Linhagem Celular , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Descoberta de Drogas
2.
Respiration ; 102(6): 405-415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231870

RESUMO

BACKGROUND: Connective tissue diseases (CTDs) are responsible for about 20% of interstitial lung disease (ILD) cases, but their diagnosis in a pulmonary unit (PU) is not always straightforward due to a heterogeneous clinical picture. OBJECTIVES: The aim of this study was to evaluate the clinical presentation of rheumatoid arthritis (RA) and CTD-ILD cases diagnosed in PU, compared to RA and CTD patients diagnosed in a rheumatologic unit (RU). METHODS: Patients with RA, systemic sclerosis (SSc), primary SjÓ§gren's syndrome (pSS), and idiopathic inflammatory myopathy were retrospectively enrolled from an RU and a PU designated to manage ILD during a period from January 2017 to October 2022. The classification of CTD-PU was carried out in a multidisciplinary setting, including the same rheumatologists that diagnosed CTD in the RU. RESULTS: ILD-CTD-PU patients were prevalently male and older. Progression from undifferentiated CTD to a specific condition was more common in ILD-CTD-PU, and those patients generally obtained a lower score on specific classification criteria. RA-PU patients resembled polymyalgia rheumatica in 47.6% of cases, also showing a greater proportion of typical joint deformities (p = 0.02). SSc-PU patients showed a usual interstitial pneumonia pattern in 76% of cases and, compared with SSc-RU, were more commonly seronegative (p = 0.03) and generally lacked fingertip lesions (p = 0.02). The majority of the diagnoses of pSS-PU were in patients with previously diagnosed ILD, in which seropositivity and sicca syndrome developed during follow-up. CONCLUSIONS: CTD-ILD patients diagnosed in the PU show severe lung involvement and a nuanced autoimmune clinical picture.


Assuntos
Artrite Reumatoide , Doenças do Tecido Conjuntivo , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Masculino , Estudos Retrospectivos , Prognóstico , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/diagnóstico , Doenças do Tecido Conjuntivo/complicações , Pulmão , Escleroderma Sistêmico/complicações
3.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049935

RESUMO

Chiral natural compounds are often biosynthesized in an enantiomerically pure fashion, and stereochemistry plays a pivotal role in biological activity. Herein, we investigated the significance of chirality for nature-inspired 3-Br-acivicin (3-BA) and its derivatives. The three unnatural isomers of 3-BA and its ester and amide derivatives were prepared and characterized for their antimalarial activity. Only the (5S, αS) isomers displayed significant antiplasmodial activity, revealing that their uptake might be mediated by the L-amino acid transport system, which is known to mediate the acivicin membrane's permeability. In addition, we investigated the inhibitory activity towards Plasmodium falciparum glyceraldehyde 3-phosphate dehydrogenase (PfGAPDH) since it is involved in the multitarget mechanism of action of 3-BA. Molecular modeling has shed light on the structural and stereochemical requirements for an efficient interaction with PfGAPDH, leading to covalent irreversible binding and enzyme inactivation. While stereochemistry affects the target binding only for two subclasses (1a-d and 4a-d), it leads to significant differences in the antimalarial activity for all subclasses, suggesting that a stereoselective uptake might be responsible for the enhanced biological activity of the (5S, αS) isomers.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Antimaláricos/química , Isoxazóis/química , Plasmodium falciparum , Modelos Moleculares
4.
Proc Natl Acad Sci U S A ; 114(33): E6942-E6951, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760974

RESUMO

NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A-D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Ligação Competitiva , Cristalografia por Raios X , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/metabolismo , Feminino , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Modelos Moleculares , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Quinoxalinas/química , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus
5.
Molecules ; 25(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182773

RESUMO

The bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from Clostridium perfringens (CpUP) and a purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP), was re-designed under continuous-flow conditions. Glyoxyl-agarose and EziGTM1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow. Taking into account the substrate specificity of CpUP and AhPNP, the results obtained pave the way to the use of the CpUP/AhPNP-based bioreactor for the preparation of other purine nucleosides.


Assuntos
Antivirais/química , Enzimas Imobilizadas/química , Purina-Núcleosídeo Fosforilase/química , Vidarabina/química , Aeromonas hydrophila/enzimologia , Biocatálise , Reatores Biológicos , Biotransformação/efeitos dos fármacos , Clostridium perfringens/enzimologia , Enzimas Imobilizadas/genética , Glioxilatos/química , Humanos , Engenharia de Proteínas/métodos , Nucleosídeos de Purina/química , Nucleosídeos de Purina/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Sefarose/química , Especificidade por Substrato , Vidarabina/biossíntese , Vidarabina/genética
6.
Br J Cancer ; 120(5): 537-546, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30739913

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been proposed as chemopreventive agents for many tumours; however, the mechanism responsible for their anti-neoplastic activity remains elusive and the side effects due to cyclooxygenase (COX) inhibition prevent this clinical application. METHODS: Molecular biology, in silico, cellular and in vivo tools, including innovative in vivo imaging and classical biochemical assays, were applied to identify and characterise the COX-independent anti-cancer mechanism of NSAIDs. RESULTS: Here, we show that tumour-protective functions of NSAIDs and exisulind (a sulindac metabolite lacking anti-inflammatory activity) occur through a COX-independent mechanism. We demonstrate these NSAIDs counteract carcinogen-induced proliferation by inhibiting the sirtuin 1 (SIRT1) deacetylase activity, augmenting acetylation and activity of the tumour suppressor p53 and increasing the expression of the antiproliferative gene p21. These properties are shared by all NSAIDs except for ketoprofen lacking anti-cancer properties. The clinical interest of the mechanism identified is underlined by our finding that p53 is activated in mastectomy patients undergoing intraoperative ketorolac, a treatment associated with decreased relapse risk and increased survival. CONCLUSION: Our study, for the first-time, links NSAID chemopreventive activity with direct SIRT1 inhibition and activation of the p53/p21 anti-oncogenic pathway, suggesting a novel strategy for the design of tumour-protective drugs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Anticarcinógenos/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Sirtuína 1/efeitos dos fármacos , Sulindaco/análogos & derivados , Proteína Supressora de Tumor p53/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anticarcinógenos/efeitos adversos , Linhagem Celular Tumoral , Simulação por Computador , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidores de Ciclo-Oxigenase/efeitos adversos , Humanos , Cetorolaco/efeitos adversos , Cetorolaco/uso terapêutico , Camundongos , Modelos Moleculares , Sirtuína 1/metabolismo , Sulindaco/farmacologia , Proteína Supressora de Tumor p53/metabolismo
7.
Bioorg Med Chem ; 24(22): 5741-5747, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27658797

RESUMO

Homologation of glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. In the present work, starting from two potent and selective unnatural amino acids previously developed by us, we investigated the effects on the activity/selectivity profile produced by a further increase in the distance between the amino acidic moiety and the distal carboxylate group. Interestingly, the insertion of an aromatic ring as a spacer produced a low micromolar affinity NMDA ligand that might represent a lead for the development of a new class of NMDA antagonists.


Assuntos
Antagonistas de Aminoácidos Excitatórios/síntese química , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/química , Ácido Glutâmico/síntese química , Ácido Glutâmico/química , Conformação Molecular , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 24(12): 2654-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27137361

RESUMO

Compounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Isoxazóis/química , Isoxazóis/farmacologia , Plasmodium falciparum/enzimologia , Antimaláricos/química , Antimaláricos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Halogenação , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Terapia de Alvo Molecular , Plasmodium falciparum/efeitos dos fármacos
9.
J Enzyme Inhib Med Chem ; 31(2): 295-301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25807299

RESUMO

The γ-aminobutyrate (GABA)-degradative enzyme GABA aminotransferase (GABA-AT) is regarded as an attractive target to control GABA levels in the central nervous system: this has important implications in the treatment of several neurological disorders and drug dependencies. We have investigated the ability of newly synthesized compounds to act as GABA-AT inhibitors. These compounds have a unique bicyclic structure: the carbocyclic ring bears the GABA skeleton, while the fused 3-Br-isoxazoline ring contains an electrophilic warhead susceptible of nucleophilic attack by an active site residue of the target enzyme. Out of the four compounds tested, only the one named (+)-3 was found to significantly inhibit mammalian GABA-AT in vitro. Docking studies, performed on the available structures of GABA-AT, support the experimental findings: out of the four tested compounds, only (+)-3 suitably orients the electrophilic 3-Br-isoxazoline warhead towards the active site nucleophilic residue Lys329, thereby explaining the irreversible inhibition of GABA-AT observed experimentally.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , 4-Aminobutirato Transaminase/química , 4-Aminobutirato Transaminase/metabolismo , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Domínio Catalítico , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 23(21): 7053-60, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432608

RESUMO

Novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation were developed; some of them possess K(i) values in the micromolar range. We studied the structure-activity relationship of these derivatives and we performed docking studies, which allowed us to find out the key interactions established by the inhibitors with the target enzyme. Biological results indicate that the nature of the P2 and P3 substituents and their binding to the S2/S3 pockets is strictly interdependent.


Assuntos
Antiprotozoários/química , Cisteína Endopeptidases/química , Isoxazóis/química , Animais , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/química , Desenho de Fármacos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
11.
Bioorg Med Chem Lett ; 24(8): 1980-2, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24630559

RESUMO

A convenient synthesis of four new enantiomerically pure acidic amino acids is reported and their affinity at ionotropic glutamate receptors was determined. The new compounds are higher homologues of glutamic acid in which the molecular complexity has been increased by introducing an aromatic/heteroaromatic ring, that is a phenyl or a thiophene ring, that could give additional electronic interactions with the receptors. The results of the present investigation indicate that the insertion of an aromatic/heteroaromatic ring into the amino acid skeleton of glutamate higher homologues is well tolerated and this modification could be exploited to generate a new class of NMDA antagonists.


Assuntos
Ácido Glutâmico/síntese química , Ácido Glutâmico/farmacologia , Receptores Ionotrópicos de Glutamato/agonistas , Animais , Sítios de Ligação , Técnicas de Química Analítica , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Ratos , Estereoisomerismo
12.
Antibiotics (Basel) ; 13(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38247624

RESUMO

Low-affinity PBP4, historically linked to penicillin resistance in Enterococcus faecalis, may still have affinity for novel cephalosporins. Ceftobiprole (BPR) is a common therapeutic choice, even with PBP4-related overexpression and amino acid substitution due to mutations. Our study aims to explore the interaction between BPR and High-Molecular-Mass (HMM) low-reactive PBPs in Penicillin-Resistant-Ampicillin-Susceptible/Ceftobiprole Non-Susceptible (PRAS/BPR-NS) E. faecalis clinical isolates. We conducted competition assays examining class A and B HMM PBPs from four PRAS/BPR-NS E. faecalis strains using purified membrane proteins and fluorescent penicillin (Bocillin FL), in treated and untreated conditions. Interaction strength was assessed calculating the 50% inhibitory concentration (IC50) values for ceftobiprole, by analyzing fluorescence intensity trends. Due to its low affinity, PBP4 did not display significant acylation among all strains. Moreover, both PBP1a and PBP1b showed a similar insensitivity trend. Conversely, other PBPs showed IC50 values ranging from 1/2-fold to 4-fold MICs. Upon higher BPR concentrations, increased percentages of PBP4 inhibition were observed in all strains. Our results support the hypothesis that PBP4 is necessary but not sufficient for BPR resistance, changing the paradigm for enterococcal cephalosporin resistance. We hypothesize that cooperation between class B PBP4 and at least one bifunctional class A PBP could be required to synthesize peptidoglycan and promote growth.

13.
ACS Infect Dis ; 10(6): 2222-2238, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717116

RESUMO

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.


Assuntos
Descoberta de Drogas , Oxidiazóis , Trypanosoma brucei brucei , Oxidiazóis/farmacologia , Oxidiazóis/química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Antiparasitários/farmacologia , Antiparasitários/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Leishmania infantum/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/química
14.
Infect Dis Rep ; 16(2): 249-259, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38525767

RESUMO

(1) Background: Granulicatella adiacens is a former nutritionally variant streptococci (NVS). NVS infective endocarditis (IE) is generally characterized by a higher rate of morbidity and mortality, partially due to difficulties in choosing the most adequate microbiological culture method and the most effective treatment strategy, and partially due to higher rates of complications, such as heart failure, peripheral septic embolism, and peri-valvular abscess, as well as a higher rate of valve replacement. Depending on the affected valve (native valve endocarditisNVE, or prosthetic valve endocarditisPVE), the American Heart Association (AHA) 2015 treatment guidelines (GLs) suggest penicillin G, ampicillin, or ceftriaxone plus gentamicin (2 weeks for NVE and up to 6 weeks for PVE), while vancomycin alone may be a reasonable alternative in patients who are intolerant of ß-lactam therapy. The European Society of Cardiology (ESC) 2023 GLs recommend treating NVE with penicillin G, ceftriaxone, or vancomycin for 6 weeks, suggesting combined with an aminoglycoside (AG) for at least the first 2 weeks only for PVE; likewise, the same recommendations for IE due to Enterococcus faecalis. (2) Methods: Starting from the case of a 51-year-old man with G. adiacens aortic bio-prosthesis IE who was successfully treated with aortic valve replacement combined with double beta-lactams, an AG-sparing regimen, we performed microbiology tests in order to validate this potential treatment change. (3) Results: As for E. faecalis IE, we found that the combination of ampicillin plus cephalosporines (like ceftriaxone or ceftobiprole) showed a synergistic effect in vitro, probably due to wider binding to penicillin-binding proteins (PBPs), thus contributing to enhanced bacterial killing and good clinical outcome, as well as avoiding the risk of nephrotoxicity due to AG association therapy. (4) Conclusions: Further studies are required to confirm this hypothesis, but double beta-lactams and an adequate sourcecontrol could be a choice in treating G. adiacens IE.

15.
Biol Direct ; 19(1): 11, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38268026

RESUMO

BACKGROUND: To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS: Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS: Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.


Assuntos
Tuberculose , Vacinas , Humanos , Glicosilação , Tuberculose/prevenção & controle , Açúcares
16.
Eur J Med Chem ; 254: 115286, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058971

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key glycolytic enzyme, plays a crucial role in the energy metabolism of cancer cells and has been proposed as a valuable target for the development of anticancer agents. Among a series of 5-substituted 3-bromo-4,5-dihydroisoxazole (BDHI) derivatives, we identified the spirocyclic compound 11, which is able to covalently inactivate recombinant human GAPDH (hGAPDH) with a faster reactivity than koningic acid, one of the most potent hGAPDH inhibitors known to date. Computational studies confirmed that conformational rigidification is crucial to stabilize the interaction of the inhibitor with the binding site, thus favoring the subsequent covalent bond formation. Investigation of intrinsic warhead reactivity at different pH disclosed the negligible reactivity of 11 with free thiols, highlighting its ability to selectively react with the activated cysteine of hGAPDH with respect to other sulfhydryl groups. Compound 11 strongly reduced cancer cell growth in four different pancreatic cancer cell lines and its antiproliferative activity correlated well with the intracellular inhibition of hGAPDH. Overall, our results qualify 11 as a potent hGAPDH covalent inhibitor with a moderate drug-like reactivity that could be further exploited to develop anticancer agents.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases , Glicólise , Neoplasias Pancreáticas/tratamento farmacológico , Compostos de Sulfidrila
17.
J Biol Chem ; 286(16): 14007-18, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21335552

RESUMO

Glutamate is the major excitatory neurotransmitter of the central nervous system (CNS) and may induce cytotoxicity through persistent activation of glutamate receptors and oxidative stress. Its extracellular concentration is maintained at physiological concentrations by high affinity glutamate transporters of the solute carrier 1 family (SLC1). Glutamate is also present in islet of Langerhans where it is secreted by the α-cells and acts as a signaling molecule to modulate hormone secretion. Whether glutamate plays a role in islet cell viability is presently unknown. We demonstrate that chronic exposure to glutamate exerts a cytotoxic effect in clonal ß-cell lines and human islet ß-cells but not in α-cells. In human islets, glutamate-induced ß-cell cytotoxicity was associated with increased oxidative stress and led to apoptosis and autophagy. We also provide evidence that the key regulator of extracellular islet glutamate concentration is the glial glutamate transporter 1 (GLT1). GLT1 localizes to the plasma membrane of ß-cells, modulates hormone secretion, and prevents glutamate-induced cytotoxicity as shown by the fact that its down-regulation induced ß-cell death, whereas GLT1 up-regulation promoted ß-cell survival. In conclusion, the present study identifies GLT1 as a new player in glutamate homeostasis and signaling in the islet of Langerhans and demonstrates that ß-cells critically depend on its activity to control extracellular glutamate levels and cellular integrity.


Assuntos
Transportador 2 de Aminoácido Excitatório/biossíntese , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/biossíntese , Células Secretoras de Insulina/citologia , Animais , Apoptose , Autofagia , Sobrevivência Celular , Transportador 2 de Aminoácido Excitatório/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/fisiologia , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Homeostase , Humanos , Ilhotas Pancreáticas/citologia , Camundongos , Modelos Biológicos , Estresse Oxidativo
18.
Food Chem ; 390: 133195, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594770

RESUMO

A collection of nature-inspired lipophilic phenolic esters have been prepared by an enzymatic synthesis under flow conditions, using the immobilized lipase B from Candida antarctica (Novozyme 435®) as a catalyst in cyclopentyl methyl ether (CPME), a non-conventional and green solvent. Their antimicrobial activity against four selected bacterial strains together with their efficiency as radical scavengers were evaluated. The obtained compounds were characterized by enhanced lipophilicity in comparison with the parent non-esterified compounds, which increased the possibility of their use as additives in the food industry.


Assuntos
Anti-Infecciosos , Ésteres , Anti-Infecciosos/farmacologia , Antioxidantes , Enzimas Imobilizadas , Proteínas Fúngicas , Lipase , Fenóis
19.
Cancers (Basel) ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35804925

RESUMO

A growing interest in the study of aerobic glycolysis as a key pathway for cancer-cell energetic metabolism, favouring tumour progression and invasion, has led to consider GAPDH as an effective drug target to specifically hit cancer cells. In this study, we have investigated a panel of 3-bromo-isoxazoline derivatives based on previously identified inhibitors of Plasmodium falciparum GAPDH (PfGAPDH). The compounds are active, to a different extent, as inhibitors of human-recombinant GAPDH. They showed an antiproliferative effect on pancreatic ductal-adenocarcinoma cells (PDAC) and pancreatic-cancer stem cells (CSCs), and among them two promising compounds were selected to be tested in vivo. Interestingly, these compounds were not effective in fibroblasts. The AXP-3019 derivative was able to block PDAC-cell growth in mice xenograft without apparent toxicity. The overall results support the assumption that selective inhibition of the glycolytic pathway, by targeting GAPDH, is an effective therapy for pancreatic cancer and that 3-bromo-isoxazoline derivatives represent a new class of anti-cancer compounds targeting glycolysis.

20.
ACS Med Chem Lett ; 12(11): 1726-1732, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795860

RESUMO

Starting from the structure of previously reported 3-Br-isoxazoline-based covalent inhibitors of P. falciparum glyceraldehyde 3-phosphate dehydrogenase, and with the intent to improve their metabolic stability and antimalarial activity, we designed and synthesized a series of simplified analogues that are characterized by the insertion of the oxadiazole ring as a bioisosteric replacement for the metabolically labile ester/amide function. We then further replaced the oxadiazole ring with a series of five-membered heterocycles and finally combined the most promising structural features. All the new derivatives were tested in vitro for antimalarial as well as antileishmanial activity. We identified two very promising new lead compounds, endowed with submicromolar antileishmanial activity and nanomolar antiplasmodial activity, respectively, and a very high selectivity index with respect to mammalian cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA