Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(17): e2120015119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446705

RESUMO

Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined "Little Ice Age" (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming.

2.
Environ Sci Technol ; 58(26): 11718-11726, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889109

RESUMO

Mountaintop removal coal mining is a source of downstream pollution. Here, we show that mountaintop removal coal mining also pollutes ecosystems downwind. We sampled regional snowpack near the end of winter along a transect of sites located 3-60 km downwind of coal mining in the Elk River valley of British Columbia, Canada. Vast quantities of polycyclic aromatic compounds (PACs), a toxic class of organic contaminants, are emitted and transported atmospherically far from emission sources. Summed PAC (ΣPAC) snowpack concentrations ranged from 29-94,866 ng/L. Snowpack ΣPAC loads, which account for variable snowpack depth, ranged from <10 µg/m2 at sites >50 km southeast of the mines to >1000 µg/m2 at sites in the Elk River valley near mining operations, with one site >15,000 µg/m2. Outside of the Elk River valley, snowpack ΣPAC loads exhibited a clear spatial pattern decreasing away from the mines. The compositional fingerprint of this PAC pollution matches closely with Elk River valley coal. Beyond our study region, modeling results suggest a depositional footprint extending across western Canada and the northwestern United States. These findings carry important implications for receiving ecosystems and for communities located close to mountaintop removal coal mines exposed to air pollution elevated in PACs.


Assuntos
Minas de Carvão , Neve , Colúmbia Britânica , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental
3.
Environ Res ; 216(Pt 1): 114439, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174760

RESUMO

Abundant reserves of metals and oil have spurred large-scale mining developments across northwestern Canada during the past 80 years. Historically, the associated emissions footprint of hazardous metal(loid)s has been difficult to identify, in part, because monitoring records are too short and sparse to have characterized their natural concentrations before mining began. Stratigraphic analysis of lake sediment cores has been employed where concerns of pollution exist to determine pre-disturbance metal(loid) concentrations and quantify the degree of enrichment since mining began. Here, we synthesize the current state of knowledge via systematic re-analysis of temporal variation in sediment metal(loid) concentrations from 51 lakes across four key regions spanning 670 km from bitumen mining in the Alberta Oil Sands Region (AOSR) to gold mining (Giant and Con mines) at Yellowknife in central Northwest Territories. Our compilation includes upland and floodplain lakes at varying distances from the mines to evaluate dispersal of pollution-indicator metal(loid)s from bitumen (vanadium and nickel) and gold mining (arsenic and antimony) via atmospheric and fluvial pathways. Results demonstrate 'severe' enrichment of vanadium and nickel at near-field sites (≤20 km) within the AOSR and 'severe' (near-field; ≤ 40 km) to 'considerable' (far-field; 40-80 km) enrichment of arsenic and antimony due to gold mining at Yellowknife via atmospheric pathways, but no evidence of enrichment of vanadium or nickel via atmospheric or fluvial pathways at the Peace-Athabasca Delta and Slave River Delta. Findings can be used by decision makers to evaluate risks associated with contaminant dispersal by the large-scale mining activities. In addition, we reflect upon methodological approaches to be considered when evaluating paleolimnological data for evidence of anthropogenic contributions to metal(loid) deposition and advocate for proactive inclusion of paleolimnology in the early design stage of environmental contaminant monitoring programs.


Assuntos
Arsênio , Poluentes Químicos da Água , Campos de Petróleo e Gás , Ouro/análise , Poluentes Químicos da Água/análise , Vanádio , Níquel , Arsênio/análise , Antimônio , Mineração , Lagos , Monitoramento Ambiental/métodos , Alberta
4.
Environ Monit Assess ; 195(11): 1354, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864721

RESUMO

The Canada-Alberta Oil Sands Monitoring (OSM) Program began long-term surface water quality monitoring on the lower Athabasca River in 2012. Sampling of low level, bio-accumulative polycyclic aromatic compounds (PACs) targeted a suite of parent and alkylated compounds in the Athabasca River (AR) mainstem using semi-permeable membrane devices (SPMDs). Samples were collected along a gradient from upstream reference near Athabasca, Alberta, through exposure to the Athabasca oil sands deposit (AOSD), various tributary inflows, and mining activities within the OSMA, to downstream recovery near Wood Buffalo National Park (WBNP) and reference on the Slave River. The program adapted over the years, shifting in response to program review and environmental events. The AOSD chemical fingerprint was present in samples collected within the AOSD, through the oil sands mineable area (OSMA), downstream to recovery from 2013 to 2019. PACs were dominated by alkylated phenanthrenes/anthracenes (PAs) and dibenzothiophenes (Ds), with elevated levels of alkylated fluorenes (Fs), naphthalenes (Ns), fluoranthenes/pyrenes (FlPys) and benzo[a]anthracenes/chrysenes (BaACs), increasing in concentration from C1 < C2 < C3 < C4. Concentrations of these petrogenic PACs were at their highest within the OSMA and downstream of tributaries. The AOSD fingerprint was absent from sites located outside of the influence of the AOSD and downstream of the Peace-Athabasca Delta on the Slave River. PAC concentrations in the AR increased with mainstem discharge and loadings from tributaries, were moderated by the PAD, and diluted by the Peace River. This work bolsters the baseline PAC information previously reported for the Athabasca River and waters downstream, reporting 7 years of data, from all sites within the mainstem monitoring program, and exploring potential regional and hydrological drivers of these between sites and over time.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Campos de Petróleo e Gás , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos , Alberta , Antracenos , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 56(13): 9408-9416, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35709477

RESUMO

Polycyclic aromatic compounds (PACs) threaten the health of aquatic ecosystems. In northeastern Alberta, Canada, decades of oil sands mining and upgrading activities have increased PAC delivery into freshwaters. This PAC pollution adds to natural inputs from river erosion of bitumen-bearing McMurray Formation outcrops and wildfire inputs. Quantifying these petrogenic and pyrogenic PAC inputs, which is key for understanding industrial impacts, remains a challenge. To distinguish petrogenic from pyrogenic inputs, we characterized river water PACs before and after the 2016 Fort McMurray wildfire, one of the largest natural disasters in Canadian history. Samples of wildfire ash and outcropping bitumen allow us to distinguish between these important PAC sources. River PAC concentrations ranged over multiple orders of magnitude (10s-10 000s ng/L). Petrogenic PACs dominated most of the postfire period with only short-term episodes of pyrogenic signatures in burned watersheds due to the wash-in of ash from the watershed. Wildfire PAC inputs during these events resulted in exceptional increases in concentrations that met or exceeded high (petrogenic) background concentrations, driven by the natural erosion of outcropping bitumen. Our dataset offers the first quantification of these two important PAC sources in this industrialized region and provides new insight into the impacts of increasing wildfire frequency and severity across the Boreal Forest.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Alberta , Ecossistema , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Poluentes Químicos da Água/análise
6.
Environ Sci Technol ; 56(3): 1736-1742, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35034441

RESUMO

Lead and mercury have long histories of anthropogenic use and release to the environment extending into preindustrial times. Yet, the timing, magnitude, and persistence of preindustrial emissions remain enigmatic, especially for mercury. Here, we quantify tropical lead and mercury deposition over the past ∼3000 years using a well-dated sediment core from a small crater lake (Lake Antoine, Grenada). Preindustrial increases in lead and mercury concentrations can be explained by varying inputs of watershed mineral and organic matter, which in turn reflect climate-driven changes in the lake level. We find no evidence that preindustrial lead and mercury use raised deposition rates in this remote ecosystem, and our results underscore the need to carefully evaluate common normalization approaches for changing lithogenic inputs and sedimentation rates. Industrial-era lead and mercury accumulation rates in Lake Antoine have been accelerated by land use and land cover change within the crater rim, yet global industrial pollution remains evident. After correcting for watershed inputs, we find that recent atmospheric lead and mercury deposition rates averaged 2925 and 24 µg/m2/y, respectively, which are in close agreement with monitoring data. Our results challenge recent assessments suggesting preindustrial mercury use raised atmospheric deposition rates globally, highlighting the unique nature of 20th Century industrial pollution.


Assuntos
Mercúrio , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Mercúrio/análise , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 55(9): 5887-5897, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856192

RESUMO

Fugitive dust associated with surface mining activities is one of the principal vectors for transport of airborne contaminants in Canada's Athabasca oil sands region (AOSR). Effective environmental management requires quantitative identification of the sources of this dust. Using natural abundance radiocarbon (Δ14C) and dual (δ13C, δ2H) compound-specific isotope analysis (CSIA), this study investigated the sources of dust and particulate-bound polycyclic aromatic compounds (PACs) deposited in AOSR lake snowpack. Lower Δ14C values, higher particulate and PAC loadings, and lower δ13C values for phenanthrene and C1-alkylated phenanthrenes/anthracenes (C1-Phen) at sites closer to the mining operations indicated unprocessed oil sand and/or petroleum coke (petcoke-a byproduct of bitumen upgrading) as major sources of anthropogenic fugitive dust. However, a Bayesian isotopic mixing model that incorporated both δ13C and δ2H could discriminate petcoke from oil sand, and determined that petcoke comprised between 44 and 95% (95% credibility intervals) of a C1-Phen isomer at lakes <25 km from the heart of the mining operations, making it by far the most abundant source. This study is the first to demonstrate the potential of CSIA to provide accurate PAC source apportionment in snowpack and reveals that petcoke rather than oil sand is the main source of mining-related particulate PACs deposited directly to AOSR lakes.


Assuntos
Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos , Alberta , Teorema de Bayes , Poeira/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise
8.
Environ Sci Technol ; 55(23): 15766-15775, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792335

RESUMO

Mercury (Hg) is a pollutant of concern across Canada and transboundary anthropogenic Hg sources presently account for over 95% of national anthropogenic Hg deposition. This study applies novel statistical analyses of 82 high-resolution dated lake sediment cores collected from 19 regions across Canada, including nearby point sources and in remote regions and spanning a full west-east geographical range of ∼4900 km (south of 60°N and between 132 and 64°W) to quantify the recent (1990-2018) spatial and temporal trends in anthropogenic atmospheric Hg deposition. Temporal trend analysis shows significant synchronous decreasing trends in post-1990 anthropogenic Hg fluxes in western Canada in contrast to increasing trends in the east, with spatial patterns largely driven by longitude and proximity to known point source(s). Recent sediment-derived Hg fluxes agreed well with the available wet deposition monitoring. Sediment-derived atmospheric Hg deposition rates also compared well to the modeled values derived from the Hg model, when lake sites located nearby (<100 km) point sources were omitted due to difficulties in comparison between the sediment-derived and modeled values at deposition "hot spots". This highlights the applicability of multi-core approaches to quantify spatio-temporal changes in Hg deposition over broad geographic ranges and assess the effectiveness of regional and global Hg emission reductions to address global Hg pollution concerns.


Assuntos
Mercúrio , Canadá , Monitoramento Ambiental , Poluição Ambiental , Sedimentos Geológicos , Lagos , Mercúrio/análise
9.
Environ Sci Technol ; 53(21): 12856-12864, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31621313

RESUMO

Bitumen mining and upgrading in northeastern Alberta, Canada, releases toxic pollutants into the atmosphere, including mercury (Hg) and methylmercury (MeHg). This Hg and MeHg is then deposited to the surrounding landscape; however, the fate of these contaminants remains unknown. Here, we compare snowpack chemistry to high-frequency measurements of river water quality across six watersheds (five impacted by oil sands development and one unimpacted). Catchment scale snowpack Hg and MeHg loads normalized to watershed area were highest near oil sands operations. River water Hg concentrations and loads tracked discharge and tended to be higher downstream of mining operations, while MeHg concentrations and loads increased through the summer, reflecting peak summer MeHg production rates. Except in the reference watershed, snowpack Hg and MeHg loads equaled or exceeded the amount of Hg and MeHg exported during freshet and, in some cases, the entire hydrologic year. This suggests landscapes across the oil sands region, which are dominated by low-relief wetlands and other shallow-water systems, are accumulating Hg and MeHg. Importantly, during years of high discharge, these low-relief systems appear to become better connected and flush MeHg (and Hg) from the watershed. Thus, these watersheds may act as temporary, rather than as permanent, natural repositories of oil sands contaminants.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Alberta , Monitoramento Ambiental , Campos de Petróleo e Gás
11.
Environ Sci Technol ; 52(15): 8157-8164, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29949357

RESUMO

The rise in mercury concentrations in lake sediment deposited over the last ∼150 years is widely recognized to have resulted from human activity. However, few studies in the Great Lakes region have used lake sediment to reconstruct atmospheric mercury deposition on millennial time scales. Here we present a 9000-year mercury record from sediment in Copper Falls; a small closed-basin lake on the Keweenaw Peninsula. Prior to abrupt increases in the 19th and 20th centuries, mercury remains at relatively low concentrations for the last 9000 years. Higher mercury fluxes in the early Holocene (3.4 ± 1.1 µg m-2 yr-1) are attributed to drier conditions and greater forest fire occurrence. The gradual decline in mercury flux over the middle to late Holocene (1.9 ± 0.2 µg m-2 yr-1) is interpreted to reflect a transition to wetter conditions, which reduced forest fires, and promoted the development of soil organic matter and deciduous forests that sequestered natural sources of mercury. The Copper Falls Lake record highlights the sensitivity of watersheds to changes in mercury inputs from both human and natural forcings, and provides millennial-scale context for recent mercury contamination that will aid in establishing baseline values for restoration efforts.


Assuntos
Incêndios , Mercúrio , Clima , Monitoramento Ambiental , Sedimentos Geológicos , Great Lakes Region , Humanos , Lagos
12.
Environ Sci Technol ; 52(19): 10946-10955, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229653

RESUMO

Increased delivery of mercury to ecosystems is a common consequence of industrialization, including in the Athabasca Oil Sands Region (AOSR) of Canada. Atmospheric mercury deposition has been studied previously in the AOSR; however, less is known about the impact of regional industry on toxic methylmercury (MeHg) concentrations in lake ecosystems. We measured total mercury (THg) and MeHg concentrations for five years from 50 lakes throughout the AOSR. Mean lake water concentrations of THg (0.4-5.3 ng L-1) and MeHg (0.01-0.34 ng L-1) were similar to those of other boreal lakes and <5% of all samples exceeded Provincial water quality guidelines. Lakes with the highest THg concentrations were found >100 km northwest of oil sands mines and received runoff from geological formations high in metals concentrations. MeHg concentrations were highest in those lakes, and in smaller productive lakes closer to oil sands mines. Simulated annual average direct deposition of THg to sampled lakes using an atmospheric chemical transport model showed <2% of all mercury deposited to sampled lakes was emitted from oil sands activities. Consequently, spatial patterns of mercury in AOSR lakes were likely most influenced by watershed and lake conditions, though mercury concentrations in these lakes may be perturbed with future development and climatic change.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Canadá , Ecossistema , Monitoramento Ambiental , Lagos , Campos de Petróleo e Gás , Óleo de Brassica napus
13.
Proc Natl Acad Sci U S A ; 112(8): 2349-54, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675506

RESUMO

In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793-1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438-1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history.


Assuntos
Atmosfera , Poluição Ambiental/análise , Indústrias , Geografia , Humanos , Chumbo/análise , Metalurgia , Peru , Fatores de Tempo
14.
Environ Sci Technol ; 48(12): 6533-43, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24819278

RESUMO

Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond to future emission reductions. The most recently compiled global inventories of integrated (all-time) anthropogenic Hg releases are dominated by atmospheric emissions from preindustrial gold/silver mining in the Americas. However, the geophysical evidence for such large early emissions is equivocal, because most reconstructions of past Hg-deposition have been based on lake-sediment records that cover only the industrial period (1850-present). Here we evaluate historical changes in atmospheric Hg deposition over the last millennium from a suite of lake-sediment cores collected from remote regions of the globe. Along with recent measurements of Hg in the deep ocean, these archives indicate that atmospheric Hg emissions from early mining were modest as compared to more recent industrial-era emissions. Although large quantities of Hg were used to extract New World gold and silver beginning in the 16th century, a reevaluation of historical metallurgical methods indicates that most of the Hg employed was not volatilized, but rather was immobilized in mining waste.


Assuntos
Atmosfera/química , Sedimentos Geológicos/química , Ouro/isolamento & purificação , Indústrias , Lagos/química , Mercúrio/análise , Mineração , Prata/isolamento & purificação , Poluentes Atmosféricos/análise , América , Geografia , Atividades Humanas , Humanos , Poluentes Químicos da Água/análise
15.
Proc Natl Acad Sci U S A ; 108(12): 4748-53, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21368146

RESUMO

Peatlands are a key component of the global carbon cycle. Chronologies of peatland initiation are typically based on compiled basal peat radiocarbon (14C) dates and frequency histograms of binned calibrated age ranges. However, such compilations are problematic because poor quality 14C dates are commonly included and because frequency histograms of binned age ranges introduce chronological artefacts that bias the record of peatland initiation. Using a published compilation of 274 basal 14C dates from Alaska as a case study, we show that nearly half the 14C dates are inappropriate for reconstructing peatland initiation, and that the temporal structure of peatland initiation is sensitive to sampling biases and treatment of calibrated 14C dates. We present revised chronologies of peatland initiation for Alaska and the circumpolar Arctic based on summed probability distributions of calibrated 14C dates. These revised chronologies reveal that northern peatland initiation lagged abrupt increases in atmospheric CH4 concentration at the start of the Bølling-Allerød interstadial (Termination 1A) and the end of the Younger Dryas chronozone (Termination 1B), suggesting that northern peatlands were not the primary drivers of the rapid increases in atmospheric CH4. Our results demonstrate that subtle methodological changes in the synthesis of basal 14C ages lead to substantially different interpretations of temporal trends in peatland initiation, with direct implications for the role of peatlands in the global carbon cycle.


Assuntos
Atmosfera , Ecossistema , Metano , Modelos Teóricos , Solo , Alaska , Atmosfera/análise , Atmosfera/química , Metano/análise , Metano/química , Solo/análise , Solo/química
16.
Environ Pollut ; 344: 123328, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38195024

RESUMO

Mountaintop removal coal mining leaves a legacy of disturbed landscapes and abandoned infrastructure with clear impacts on water resources; however, the intensity and persistence of this water pollution remains poorly characterized. Here we examined the downstream impacts of over a century of coal mining in the Crowsnest Pass (Alberta, Canada). Water samples were collected downstream of two historical coal mines: Tent Mountain and Grassy Mountain. Tent Mountain hosts a partially reclaimed surface mine that closed in 1983. Selenium concentrations downstream of Tent Mountain reached 185 µg/L in a lake below the mine spoil pile, and up to 23 µg/L in Crowsnest Creek, which drains the lake and the mine property. Further downstream, a well-dated sediment core from Crowsnest Lake records increases in sediment, selenium, lead, carbon, nitrogen, and polycyclic aromatic compounds that closely tracked the history of mining at Tent Mountain. In contrast, episodic discharge of mine water from abandoned underground adits at Grassy Mountain drive periodic (but short-term) increases in iron, various metals, and suspended sediment. These results underscore the lasting downstream impacts of abandoned and even reclaimed coal mines.


Assuntos
Minas de Carvão , Selênio , Poluentes Químicos da Água , Minas de Carvão/métodos , Ecossistema , Monitoramento Ambiental/métodos , Selênio/análise , Poluentes Químicos da Água/análise , Mineração , Água , Alberta , Carvão Mineral
17.
Environ Sci Technol ; 47(9): 4181-8, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23597056

RESUMO

Both cinnabar (HgS) and metallic mercury (Hg(0)) were important resources throughout Andean prehistory. Cinnabar was used for millennia to make vermillion, a red pigment that was highly valued in pre-Hispanic Peru; metallic Hg(0) has been used since the mid-16th century to conduct mercury amalgamation, an efficient process of extracting precious metals from ores. However, little is known about which cinnabar deposits were exploited by pre-Hispanic cultures, and the environmental consequences of Hg mining and amalgamation remain enigmatic. Here we use Hg isotopes to source archeological cinnabar and to fingerprint Hg pollution preserved in lake sediment cores from Peru and the Galápagos Islands. Both pre-Inca (pre-1400 AD) and Colonial (1532-1821 AD) archeological artifacts contain cinnabar that matches isotopically with cinnabar ores from Huancavelica, Peru, the largest cinnabar-bearing district in Central and South America. In contrast, the Inca (1400-1532 AD) artifacts sampled are characterized by a unique Hg isotopic composition. In addition, preindustrial (i.e., pre-1900 AD) Hg pollution preserved in lake sediments matches closely the isotopic composition of cinnabar from the Peruvian Andes. Industrial-era Hg pollution, in contrast, is distinct isotopically from preindustrial emissions, suggesting that pre- and postindustrial Hg emissions may be distinguished isotopically in lake sediment cores.


Assuntos
Cultura , Compostos de Mercúrio , Mercúrio , Arqueologia , Sedimentos Geológicos/química , História Antiga , Isótopos , Mineração , Peru , Poluentes Químicos da Água/análise
18.
Environ Sci Technol Lett ; 10(11): 1117-1124, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38025955

RESUMO

Mercury concentrations and yields in the Yukon River are the highest of the world's six largest panarctic drainages. Permafrost thaw has been implicated as the main driver of these high values. Alternative sources include mercury released from glacial melt and erosion, atmospheric mercury pollution, or surface mining. To determine the summer source and speciation of mercury across the Yukon River basin within Canada, we sampled water from 12 tributaries and the mainstem during July 2021. The total (unfiltered) mercury concentration in the glacier-fed White River was 57 ng/L, >10 times higher than all other sampled tributaries. The White River's high total mercury concentrations were driven by suspended sediment and persisted ∼300 km downstream of glacierized headwaters. Total mercury concentrations were lowest (typically <2 ng/L) in tributaries downstream of still-water landscape features (e.g., lakes and settling ponds), suggesting these features are effective sinks for sediment-bound mercury. Low total mercury concentrations (∼2 ng/L) were also observed in five tributaries across diverse thawing permafrost landscapes. These results suggest that glacial erosion and meltwater transport, not permafrost, drive enhanced exports of mercury with suspended sediment. Mercury exports may decline as glacial watersheds pass peak water. Other factors, including mercury released from permafrost thaw, are minor components at present.

19.
Environ Sci Technol ; 46(13): 7135-41, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22687141

RESUMO

Anthropogenic activities have increased the amount of mercury (Hg) transported atmospherically to the Arctic. At the same time, recent climate warming is altering the limnology of arctic lakes and ponds, including increases in aquatic primary production. It has been hypothesized that climate-driven increases in aquatic production have enhanced Hg scavenging from the water column, and that this mechanism may account for much of the recent rise in lake sediment Hg. Here, we test the relationship between climate, algal production, and sediment Hg using a well-dated and multiproxy lake sediment record spanning the Holocene from Lake CF3 (Baffin Island, Nunavut, Canada). During the early Holocene, peak (summer) insolation drove July air temperatures higher than present, and resulted in increased autochthonous primary production as recorded by total organic matter, spectrally inferred Chl-a, diatom abundance, and carbon stable isotopic signatures. However, there are no relationships between any of these proxies and sediment Hg concentrations during this interval. Given that the behavior of preindustrial Hg was relatively stable during past intervals of naturally mediated high production, we surmise that postindustrial increases in Hg accumulation within CF3 reflect a multiplicative effect of atmospheric deposition of anthropogenic Hg and increased sedimentation rates.


Assuntos
Sedimentos Geológicos/análise , Lagos/análise , Mercúrio/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Clorofila/análise , Clorofila A , Clorófitas/química , Clima , Diatomáceas/química , Monitoramento Ambiental , Fósseis , Nunavut
20.
Proc Natl Acad Sci U S A ; 106(22): 8830-4, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19451629

RESUMO

We present unambiguous records of preindustrial atmospheric mercury (Hg) pollution, derived from lake-sediment cores collected near Huancavelica, Peru, the largest Hg deposit in the New World. Intensive Hg mining first began ca. 1400 BC, predating the emergence of complex Andean societies, and signifying that the region served as a locus for early Hg extraction. The earliest mining targeted cinnabar (HgS) for the production of vermillion. Pre-Colonial Hg burdens peak ca. 500 BC and ca. 1450 AD, corresponding to the heights of the Chavín and Inca states, respectively. During the Inca, Colonial, and industrial intervals, Hg pollution became regional, as evidenced by a third lake record approximately 225 km distant from Huancavelica. Measurements of sediment-Hg speciation reveal that cinnabar dust was initially the dominant Hg species deposited, and significant increases in deposition were limited to the local environment. After conquest by the Inca (ca. 1450 AD), smelting was adopted at the mine and Hg pollution became more widely circulated, with the deposition of matrix-bound phases of Hg predominating over cinnabar dust. Our results demonstrate the existence of a major Hg mining industry at Huancavelica spanning the past 3,500 years, and place recent Hg enrichment in the Andes in a broader historical context.


Assuntos
Poluição Ambiental/análise , Água Doce/química , Sedimentos Geológicos/química , Mercúrio/análise , Peru
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA