Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(9): 3972-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245043

RESUMO

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential.


Assuntos
Peptídeos Penetradores de Células/química , Lipopeptídeos/química , Quinolinas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/toxicidade , Células Cultivadas , Endossomos/metabolismo , Humanos , Indicadores e Reagentes , Mediadores da Inflamação/metabolismo , Lipídeos , Lipopeptídeos/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Quinolinas/metabolismo
2.
Plants (Basel) ; 11(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890439

RESUMO

Climate change is one of the main challenges for actual and future generations. Global warming affects plants and animals and is responsible for considerable crop loss. This study studied the influence of antagonist successive stresses, cold-heat and heat-cold, on two medicinal plants Ocimum basilicum L. and Salvia officinalis L. The photosynthetic parameters decreased for plants under the variation of subsequent stress. Net assimilation rates and stomatal conductance to water vapor are more affected in the case of plants under cold-heat consecutive stress than heat-cold successive stress. Emissions of volatile organic compounds have been enhanced for plants under successive stress when compared with control plants. Chlorophyll concentrations for plants under successive stress decreased for basil and sage plants. The total phenolic and flavonoid contents were not affected by the successive stresses when compared with the plants under only one type of treatment.

3.
Colloids Surf B Biointerfaces ; 216: 112536, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567806

RESUMO

Engineered nanomaterials are increasingly used in everyday life applications and, in consequence, significant amounts are being released into the environment. From soil, water, and air they can reach the organelles of edible plants, potentially impacting the food chain and human health. The potential environmental and health impact of these nanoscale materials is of public concern. TiO2 and ZnO are among the most significant nanomaterials in terms of production amounts. Our study aimed at evaluating the effects of large-scale TiO2 (~100 nm) and ZnO (~200 nm) nanoparticles on soybean plants grown in vitro. The effect of different concentrations of nanoparticles (10, 100, 1000 mg/L) was evaluated regarding plant morphology and metabolic changes. ZnO nanoparticles showed higher toxicity compared to TiO2 in the experimental set-up. Overall, elevated levels of chlorophylls and proteins were observed, as well as increased concentrations of ascorbic and dehydroascorbic acids. Also, the decreasing stomatal conductance to water vapor and net CO2 assimilation rate show higher plant stress levels. In addition, ZnO nanoparticle treatments severely affected plant growth, while TEM analysis revealed ultrastructural changes in chloroplasts and rupture of leaf cell walls. By combining ICP-OES and TEM results, we were able to show that the nanoparticles were metabolized, and their internalization in the soybean plant tissues occurred in ionic forms. This behavior most likely is the main driving force of nanoparticle toxicity.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Nanopartículas/metabolismo , Glycine max , Titânio/toxicidade , Óxido de Zinco/química
4.
Oxid Med Cell Longev ; 2020: 9510305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425222

RESUMO

Camelina sativa is mainly used as an oilseed crop; its edible oil is being also used as a traditional home remedy for the treatment of ulcers, wounds, and eye inflammations, due to the antioxidant activities. In the present study, the chemically characterized alcoholic extracts of Camelina sativa var. Madalina defatted seeds (5 g/kg body weight p.o., suspended in CMC-Na 0.1%) were administered to stress-induced animal models of irritable bowel syndrome (based on combinations of contention stress and multifactorial stress and maternal stress) and evaluated for the behavioural (short-term memory by the Y maze test, the anxious behaviour using the elevated plus maze test, and the antidepressant effect using the forced swimming test) and brain and bowel tissue oxidative status (superoxide dismutase and glutathione peroxidase enzymes activities and malondialdehyde and total soluble protein levels) improving effects. According to the chemical characterization, the extracts were rich in sinapine, glucosinolates, and flavonol glycosides. Moreover, this study showed the beneficial effects of Camelina sativa seed methanolic and ethanolic extracts on the behaviour and brain and bowel tissues oxidative stress status of stress exposure-based IBS mouse models. Despite the slight differences in the chemical composition of the methanolic and ethanolic extracts, the results suggested that the Camelina sativa extracts could reverse the short-term memory impairments caused by stress exposure and also could decrease the intensity and frequency of the anxiety and depressive-like behaviours observed in the stress-exposed animal models of IBS. Furthermore, the Camelina sativa extracts showed a significant effect on the oxidative stress markers in the brain and bowel tissues of the studied animal model by decreasing the superoxide dismutase activity and increasing the glutathione peroxidase activity. However, the results suggested that the extracts could also increase lipid peroxidation in bowel tissues. In this way, this study provides additional evidence that the administration of Camelina sativa seed alcoholic extracts could improve cognitive performances and mood and exhibit the antioxidant capacity in both the brain and bowel tissues.


Assuntos
Brassicaceae/metabolismo , Etanol/química , Síndrome do Intestino Irritável/metabolismo , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Metanol/química , Estresse Oxidativo , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Comportamento Animal , Emoções , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto , Camundongos , Extratos Vegetais/farmacologia , Sementes/metabolismo , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Natação
5.
Ther Deliv ; 2(1): 71-82, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22833926

RESUMO

Advancements in the development of large bioactive molecules as therapeutic agents have made drug delivery an active and important field of research. Cell-penetrating peptides (CPPs) have the ability to deliver an array of molecules and even nano-size particles into cells in an efficient and non-toxic manner, both in vitro and in vivo. This review aims to give a perspective on the obstacles that CPP-mediated drug delivery is currently facing as well as the great opportunities for improvements that lie ahead. Strategies for delivery of novel gene-modulating agents and enhancing efficacy of classical drugs will be discussed, as well as methods for increasing bioavailability and tissue specificity of CPPs. The usefulness and potential of CPPs as therapeutic drug-delivery vectors will be exemplified by their use in the treatment of cancer, viral infection and muscular dystrophy.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Transporte Biológico , Peptídeos Penetradores de Células/farmacocinética , Endossomos/metabolismo , Humanos , Distrofias Musculares/tratamento farmacológico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA