Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219127

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide to chlorophyllide, catalyzed by dark-operative protochlorophyllide oxidoreductase. Dark-operative protochlorophyllide oxidoreductase contains two [4Fe-4S]-containing component proteins (BchL and BchNB) that assemble upon ATP binding to BchL to coordinate electron transfer and protochlorophyllide reduction. But the precise nature of the ATP-induced conformational changes is poorly understood. We present a crystal structure of BchL in the nucleotide-free form where a conserved, flexible region in the N-terminus masks the [4Fe-4S] cluster at the docking interface between BchL and BchNB. Amino acid substitutions in this region produce a hyperactive enzyme complex, suggesting a role for the N-terminus in autoinhibition. Hydrogen-deuterium exchange mass spectrometry shows that ATP binding to BchL produces specific conformational changes leading to release of the flexible N-terminus from the docking interface. The release also promotes changes within the local environment surrounding the [4Fe-4S] cluster and promotes BchL-complex formation with BchNB. A key patch of amino acids, Asp-Phe-Asp (the 'DFD patch'), situated at the mouth of the BchL ATP-binding pocket promotes intersubunit cross stabilization of the two subunits. A linked BchL dimer with one defective ATP-binding site does not support protochlorophyllide reduction, illustrating nucleotide binding to both subunits as a prerequisite for the intersubunit cross stabilization. The masking of the [4Fe-4S] cluster by the flexible N-terminal region and the associated inhibition of the activity is a novel mechanism of regulation in metalloproteins. Such mechanisms are possibly an adaptation to the anaerobic nature of eubacterial cells with poor tolerance for oxygen.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Trifosfato de Adenosina/química , Catálise , Proteínas Ferro-Enxofre/química , Espectrometria de Massas , Nitrogenase/química , Nitrogenase/metabolismo , Fotossíntese , Protoclorifilida/química , Protoclorifilida/metabolismo , Especificidade por Substrato
2.
J Biol Chem ; 295(39): 13630-13639, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32737200

RESUMO

A key step in bacteriochlorophyll biosynthesis is the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), catalyzed by dark-operative protochlorophyllide oxidoreductase (DPOR). DPOR is made of electron donor (BchL) and acceptor (BchNB) component proteins. BchNB is further composed of two subunits each of BchN and BchB arranged as an α2ß2 heterotetramer with two active sites for substrate reduction. Such oligomeric architectures are found in several other electron transfer (ET) complexes, but how this architecture influences activity is unclear. Here, we describe allosteric communication between the two identical active sites in Rhodobacter sphaeroides BchNB that drives sequential and asymmetric ET. Pchlide binding to one BchNB active site initiates ET from the pre-reduced [4Fe-4S] cluster of BchNB, a process similar to the deficit spending mechanism observed in the structurally related nitrogenase complex. Pchlide binding in one active site is recognized in trans by an Asp-274 from the opposing half, which is positioned to serve as the initial proton donor. A D274A variant DPOR binds to two Pchlide molecules in the BchNB complex, but only one is bound productively, stalling Pchlide reduction in both active sites. A half-active complex combining one WT and one D274A monomer also stalled after one electron was transferred in the WT half. We propose that such sequential electron transfer in oligomeric enzymes serves as a regulatory mechanism to ensure binding and recognition of the correct substrate. The findings shed light on the functional advantages imparted by the oligomeric architecture found in many electron transfer enzymes.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Rhodobacter sphaeroides/enzimologia , Transporte de Elétrons , Especificidade por Substrato
3.
J Bacteriol ; 202(3)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712282

RESUMO

Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that Escherichia coli BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two E. coli [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of sufA and sufB genes within the sufABCDSE operon. We show that this fusion protein accumulates in cells but is inactive in [Fe-S] cluster biogenesis. Restoration of an intact Suf pathway combined with enhanced suf operon expression led to a remarkable (∼3-fold) increase in the production of the [4Fe-4S] cluster-containing BchL protein, a key component of the dark-operative protochlorophyllide oxidoreductase complex. These results show that this engineered "SufFeScient" derivative of BL21(DE3) is suitable for enhanced large-scale synthesis of an [Fe-S] cluster-containing protein.IMPORTANCE Large quantities of recombinantly overproduced [Fe-S] cluster-containing proteins are necessary for their in-depth biochemical characterization. Commercially available E. coli strain BL21(DE3) and its derivatives have a mutation that inactivates the function of one of the two native pathways (Suf pathway) responsible for cluster biogenesis. Correction of the mutation, combined with sequence changes that elevate Suf protein levels, can increase yield and cluster occupancy of [Fe-S] cluster-containing enzymes, facilitating the biochemical analysis of this fascinating group of proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Adenosina Trifosfatases/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Ferro-Enxofre/genética , Óperon/genética
4.
Methods Mol Biol ; 2353: 69-78, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292544

RESUMO

Proteins carrying iron-sulfur ([Fe-S]) clusters are critical to the basic metabolism of all organisms. Structural and biochemical investigations of many such [Fe-S] cluster proteins depend on recombinant overproduction using heterologous bacterial hosts such as Escherichia coli . Here, we describe a detailed procedure for the overproduction and purification of two oxygen-sensitive component proteins of the dark-operative protochlorophyllide oxidoreductase (DPOR) complex. The method relies on an engineered Escherichia coli cell line carrying a correction in its genome to restore the loss of a key [Fe-S] cluster biogenesis pathway. The method can also be potentially adapted for the overproduction of other Fe-S proteins.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Enxofre/metabolismo
5.
Nat Struct Mol Biol ; 26(2): 129-136, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30723327

RESUMO

Replication protein A (RPA) coordinates important DNA metabolic events by stabilizing single-stranded DNA (ssDNA) intermediates, activating the DNA-damage response and handing off ssDNA to the appropriate downstream players. Six DNA-binding domains (DBDs) in RPA promote high-affinity binding to ssDNA yet also allow RPA displacement by lower affinity proteins. We generated fluorescent versions of Saccharomyces cerevisiae RPA and visualized the conformational dynamics of individual DBDs in the context of the full-length protein. We show that both DBD-A and DBD-D rapidly bind to and dissociate from ssDNA while RPA remains bound to ssDNA. The recombination mediator protein Rad52 selectively modulates the dynamics of DBD-D. These findings reveal how RPA-interacting proteins with lower ssDNA binding affinities can access the occluded ssDNA and remodel individual DBDs to replace RPA.


Assuntos
Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína de Replicação A/química , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA