Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Vasc Surg ; 106: 438-466, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815914

RESUMO

BACKGROUND: Spinal cord ischemia is one of the complications that can occur after open and endovascular thoracoabdominal aortic repair. This occurs despite various perioperative approaches, including distal aortic perfusion, hybrid procedures with extra anatomical bypasses, motor-evoked potential, and cerebrospinal fluid drainage. The inability to recognize spinal ischemia in a timely manner remains a devastating complication after thoracoabdominal aortic repair.This review aims to look at novel technologies that are designed for continuous monitoring to detect early changes that signal the development of spinal cord ischemia and to discuss their benefits and limitations. METHODS: We conducted a systematic review of the technologies available for continuous monitoring in the intensive care unit for early detection of spinal cord ischemia. Studies were eligible for inclusion if they used different technologies for monitoring spinal ischemia during the postoperative period. All articles that were not available in English were excluded. To ensure that all relevant articles were included, no other significant restrictions were imposed. RESULTS: We identified 59 studies from the outset to December 2022 to be included in our study. New techniques have been studied as potentially useful monitoring tools that could provide simple and effective monitoring of the spinal cord. These include near-infrared spectroscopy, contrast-enhanced ultrasound, magnetic resonance imaging, fiber optic monitoring of the spinal cord, and cerebrospinal fluid biomarkers. CONCLUSIONS: Despite the development of new techniques to monitor for postoperative spinal cord ischemia, their use remains limited. We recommend more future research to ensure rapid intervention for our patients.

2.
Clin Transplant ; 37(5): e14951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856124

RESUMO

BACKGROUND: Increasing access and better allocation of organs in the field of transplantation is a critical problem in clinical care. Limitations exist in accurately predicting allograft discard. Potential exists for machine learning to provide a balanced assessment of the potential for an organ to be used in a transplantation procedure. METHODS: We accessed and utilized all available deceased donor United Network for Organ Sharing data from 1987 to 2020. With these data, we evaluated the performance of multiple machine learning methods for predicting organ use. The machine learning methods trialed included XGBoost, random forest, Naïve Bayes (NB), logistic regression, and fully connected feedforward neural network classifier methods. The top two methods, XGBoost and random forest, were fully developed using 10-fold cross-validation and Bayesian optimization of hyperparameters. RESULTS: The top performing model at predicting liver organ use was an XGBoost model which achieved an AUC-ROC of .925, an AUC-PR of .868, and an F1 statistic of .756. The top performing model for predicting kidney organ use classification was an XGBoost model which achieved an AUC-ROC of .952, and AUC-PR of .883, and an F1 statistic of .786. CONCLUSIONS: The XGBoost method demonstrated a significant improvement in predicting donor allograft discard for both kidney and livers in solid organ transplantation procedures. Machine learning methods are well suited to be incorporated into the clinical workflow; they can provide robust quantitative predictions and meaningful data insights for clinician consideration and transplantation decision-making.


Assuntos
Aprendizado de Máquina , Doadores de Tecidos , Humanos , Teorema de Bayes , Modelos Logísticos
3.
Bioconjug Chem ; 26(1): 39-50, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25496453

RESUMO

As the number of diagnostic and therapeutic applications utilizing gold nanoparticles (AuNPs) increases, so does the need for AuNPs that are stable in vivo, biocompatible, and suitable for bioconjugation. We investigated a strategy for AuNP stabilization that uses methoxypolyethylene glycol-graft-poly(l-lysine) copolymer (MPEG-gPLL) bearing free amino groups as a stabilizing molecule. MPEG-gPLL injected into water solutions of HAuCl4 with or without trisodium citrate resulted in spherical (Zav = 36 nm), monodisperse (PDI = 0.27), weakly positively charged nanoparticles (AuNP3) with electron-dense cores (diameter: 10.4 ± 2.5 nm) and surface amino groups that were amenable to covalent modification. The AuNP3 were stable against aggregation in the presence of phosphate and serum proteins and remained dispersed after their uptake into endosomes. MPEG-gPLL-stabilized AuNP3 exhibited high uptake and very low toxicity in human endothelial cells, but showed a high dose-dependent toxicity in epithelioid cancer cells. Highly stable radioactive labeling of AuNP3 with (99m)Tc allowed imaging of AuNP3 biodistribution and revealed dose-dependent long circulation in the blood. The minor fraction of AuGNP3 was found in major organs and at sites of experimentally induced inflammation. Gold analysis showed evidence of a partial degradation of the MPEG-gPLL layer in AuNP3 particles accumulated in major organs. Radiofrequency-mediated heating of AuNP3 solutions showed that AuNP3 exhibited heating behavior consistent with 10 nm core nanoparticles. We conclude that PEG-pPLL coating of AuNPs confers "stealth" properties that enable these particles to exist in vivo in a nonaggregating, biocompatible state making them suitable for potential use in biomedical applications such as noninvasive radiofrequency cancer therapy.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Polilisina/análogos & derivados , Técnicas de Ablação , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Estabilidade de Medicamentos , Feminino , Ouro/farmacocinética , Ouro/uso terapêutico , Humanos , Ligantes , Camundongos , Polilisina/química , Ondas de Rádio , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
4.
Nanomedicine ; 10(6): 1121-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24650884

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal and chemo-refractory cancers, clearly, alternative treatment strategies are needed. We utilized 10nm gold nanoparticles as a scaffold to synthesize nanoconjugates bearing a targeting antibody (cetuximab, C225) and gemcitabine. Loading efficiency of gemcitabine on the gold nanoconjugates was 30%. Targeted gold nanoconjugates in combination with RF were selectively cytotoxic to EGFR expressing Hep3B and SNU449 cells when compared to isotype particles with/without RF (P<0.05). In animal experiments, targeted gold nanoconjugates halted the growth of subcutaneous Hep3B xenografts in combination with RF exposure (P<0.05). These xenografts also demonstrated increased apoptosis, necrosis and decreased proliferation compared to controls. Normal tissues were unharmed. We have demonstrated that non-invasive RF-induced hyperthermia when combined with targeted delivery of gemcitabine is more effective and safe at dosages ~275-fold lower than the current clinically-delivered systemic dose of gemcitabine. FROM THE CLINICAL EDITOR: In a model of hepatocellular carcinoma, the authors demonstrate that non-invasive RF-induced hyperthermia applied with cetuximab targeted delivery of Au NP-gemcitabine conjugate is more effective and safe at dosages ~ 275-fold lower than the current clinically-used systemic dose of gemcitabine.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma Hepatocelular/terapia , Desoxicitidina/análogos & derivados , Ouro/uso terapêutico , Neoplasias Hepáticas/terapia , Nanoconjugados/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Cetuximab , Desoxicitidina/química , Desoxicitidina/uso terapêutico , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Hipertermia Induzida , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos BALB C , Nanoconjugados/química , Gencitabina
5.
ACS Nano ; 18(3): 2446-2454, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38207242

RESUMO

Two-dimensional (2D) nanomaterials have numerous interesting chemical and physical properties that make them desirable building blocks for the manufacture of macroscopic materials. Liquid-phase processing is a common method for forming macroscopic materials from these building blocks including wet-spinning and vacuum filtration. As such, assembling 2D nanomaterials into ordered functional materials requires an understanding of their solution dynamics. Yet, there are few experimental studies investigating the hydrodynamics of disk-like materials. Herein, we report the lateral diffusion of hexagonal boron nitride nanosheets (h-BN and graphene) in aqueous solution when confined in 2-dimensions. This was done by imaging fluorescent surfactant-tagged nanosheets and visualizing them by using fluorescence microscopy. Spectroscopic studies were conducted to characterize the interactions between h-BN and the fluorescent surfactant, and atomic force microscopy (AFM) was conducted to characterize the quality of the dispersion. The diffusion data under different gap sizes and viscosities displayed a good correlation with Kramers' theory. We propose that the yielded activation energies by Kramers' equation express the magnitude of the interaction between fluorescent surfactant tagged h-BN and glass because the energies remain constant with changing viscosity and decrease with increasing confinement size. The diffusion of graphene presented a similar trend with similar activation energy as the h-BN. This relationship suggests that Kramers' theory can also be applied to simulate the diffusion of other 2D nanomaterials.

6.
Antimicrob Agents Chemother ; 57(9): 4444-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836166

RESUMO

We studied the effect of noninvasive radiofrequency-induced hyperthermia on the viability of Aspergillus fumigatus hyphae in vitro. Radiofrequency-induced hyperthermia resulted in significant (>70%, P < 0.0001) hyphal damage in a time and thermal dose-dependent fashion as assessed by XTT [(sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl] (1)-2H-tetrazolium inner salt)], DiBAC [bis-(1,3-dibutylbarbituric acid) trimethine oxonol] staining, and transmission electron microscopy. For comparison, water bath hyperthermia was used over the range of 45 to 55°C to study hyphal damage. Radiofrequency-induced hyperthermia resulted in severe damage to the outer fibrillar layer of hyphae at a shorter treatment time compared to water bath hyperthermia. Our preliminary data suggest that radiofrequency-induced hyperthermia might be an additional therapeutic approach to use in the management of mold infections.


Assuntos
Aspergillus fumigatus/ultraestrutura , Hifas/ultraestrutura , Ondas de Rádio , Aspergillus fumigatus/crescimento & desenvolvimento , Barbitúricos , Corantes Fluorescentes , Temperatura Alta , Hifas/crescimento & desenvolvimento , Isoxazóis , Viabilidade Microbiana , Sais de Tetrazólio
7.
Methodist Debakey Cardiovasc J ; 19(2): 78-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910549

RESUMO

Ruptured abdominal aortic aneurysm (RAAA) is an acute aortic condition that requires emergent intervention and appropriate continuity of care to optimize patient outcomes. We describe the standardized RAAA protocol at the Houston Methodist Hospital Acute Aortic Treatment Center, developed to navigate critical patient transfer periods safely and efficiently, make crucial decisions about surgical intervention, and clearly communicate these plans with other care team providers. Our workflow is organized into five phases: prehospital, preoperative, intraoperative, postoperative, and post-discharge. We identify the transfer center, anesthesia, operating room nursing staff, surgeons, and intensive care unit as key entities of our acute aortic pathology care team. This systematic protocol for the management of acute aortic emergencies such as RAAA identifies critical decision points, potential complications at each stage, and recommendations for best practice.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Humanos , Protestantismo , Assistência ao Convalescente , Aneurisma da Aorta Abdominal/cirurgia , Alta do Paciente , Ruptura Aórtica/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Fatores de Risco
8.
J Vasc Surg Cases Innov Tech ; 9(3): 101115, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37692905

RESUMO

The recent decline in RAAA incidence and the fast paced scenario with associated challenges regarding training calls for initiative for a better training environment to maximize learning. This led us to the creation of a pulsatile human cadaveric RAAA model. Fresh frozen cadaver was used to create RAAA with BioTissue in hybrid suite with ability to perform CBCTA for sizing. As a proof of concept, the model was used to perform REVAR with proximal CODA balloon control. The model proved to be feasible and we believe it is a better environment to train and gain adequate proficiency in RAAA management.

9.
Nanomedicine ; 8(7): 1096-105, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22349096

RESUMO

The use of noninvasive radiofrequency (RF) electric fields as an energy source for thermal activation of nanoparticles within cancer cells could be a valuable addition to the emerging field of nano-mediated cancer therapies. Based on investigations of cell death through hyperthermia, and offering the ability for total-body penetration by RF fields, this technique is thought to complement and possibly outperform existing nano-heat treatments that utilize alternative heat production via optical or magnetic stimuli. However, it remains a challenge to understand fully the complex RF-nanoparticle-intracellular interactions before full system optimization can be engineered. Herein we have shown that liver cancer cells can selectively internalize antibody-conjugated gold nanoparticles (AuNPs) through receptor-mediated endocytosis, with the nanoparticles predominantly accumulating and aggregating within cytoplasmic endolysosomes. After exposure to an external RF field, nonaggregated AuNPs absorbed and dissipated energy as heat, causing thermal damage to the targeted cancer cells. We also observed that RF absorption and heat dissipation is dependent on solubility of AuNPs in the colloid, which is pH dependent. Furthermore, by modulating endolysosomal pH it is possible to prevent intracellular AuNP aggregation and enhance thermal cytotoxicity in hepatocellular cancer cells. FROM THE CLINICAL EDITOR: Gold nanoparticles absorb energy from RF fields and can exert hyperthermic effects leading to cell death. Combining this known effect with antibody-based targeting of the nanoparticles, selective cancer specific hyperthermia induced cell death therapies can be designed, as demonstrated in this article.


Assuntos
Ouro/uso terapêutico , Hipertermia Induzida/métodos , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/terapia , Nanopartículas/uso terapêutico , Terapia por Radiofrequência , Anticorpos/química , Anticorpos/uso terapêutico , Linhagem Celular Tumoral , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Nanopartículas/química , Solubilidade
10.
Ann Surg Open ; 3(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36275876

RESUMO

Background: Recipient donor matching in liver transplantation can require precise estimations of liver volume. Currently utilized demographic-based organ volume estimates are imprecise and nonspecific. Manual image organ annotation from medical imaging is effective; however, this process is cumbersome, often taking an undesirable length of time to complete. Additionally, manual organ segmentation and volume measurement incurs additional direct costs to payers for either a clinician or trained technician to complete. Deep learning-based image automatic segmentation tools are well positioned to address this clinical need. Objectives: To build a deep learning model that could accurately estimate liver volumes and create 3D organ renderings from computed tomography (CT) medical images. Methods: We trained a nnU-Net deep learning model to identify liver borders in images of the abdominal cavity. We used 151 publicly available CT scans. For each CT scan, a board-certified radiologist annotated the liver margins (ground truth annotations). We split our image dataset into training, validation, and test sets. We trained our nnU-Net model on these data to identify liver borders in 3D voxels and integrated these to reconstruct a total organ volume estimate. Results: The nnU-Net model accurately identified the border of the liver with a mean overlap accuracy of 97.5% compared with ground truth annotations. Our calculated volume estimates achieved a mean percent error of 1.92% + 1.54% on the test set. Conclusions: Precise volume estimation of livers from CT scans is accurate using a nnU-Net deep learning architecture. Appropriately deployed, a nnU-Net algorithm is accurate and quick, making it suitable for incorporation into the pretransplant clinical decision-making workflow.

11.
Ann Thorac Surg ; 114(3): 711-719, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582751

RESUMO

BACKGROUND: Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. METHODS: The Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). RESULTS: Preoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. CONCLUSIONS: Machine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making.


Assuntos
Ponte de Artéria Coronária , Aprendizado de Máquina , Algoritmos , Humanos , Readmissão do Paciente , Medição de Risco , Fatores de Risco
12.
IEEE J Transl Eng Health Med ; 10: 1900309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992372

RESUMO

Objective: To evaluate a novel technology for real time tracking of RF-Identified (RFID) surgical tools (Biotic System), providing intraoperative data analytics during simulated cardiovascular procedures. Ineffective asset management in the Operating Room (OR) leads to inefficient utilization of resources and contributes to prolonged operative times and increased costs. Analysis of captured data can assist in quantifying instrument utilization, procedure flow, performance and prevention of retained instruments. Methods & Results: Five surgeons performed thirteen simulated surgical cases on three human cadavers. Procedures included (i) two abdominal aortic aneurysm (AAA) repairs, (ii) three carotid endarterectomies (CE), (iii) two femoropopliteal (fem-pop) bypasses, (iv) thoracic aortic aneurysm repair, (v) coronary artery bypass graft, (vi) aortic valve replacement, (vii) ascending aortic aneurysm repair, (viii) heart transplants, and (ix) mitral valve replacement. For each case an average of 139 surgical instruments were RFID-tagged and tracked intraoperatively. Data was captured and analyzed retrospectively. Of the 139 instruments tracked across each of the 13 cases, 55 instruments (39.5%) were actually used, demonstrating a high level of redundancy. For repeat cases (i.e. CE/AAA/fem-pop): (i) average instrument usage was 41 ± 3.6 (8.8% variation) for CE (n=3); (ii) average instrument usage was 69 ± 4.0 (5.8% variation) for AAA (n=2); and (iii) average instrument usage was 48 ± 2.5 (5.3% variation) for fem- pop (n=2). Results also showed a reduction in end-of-procedure instrument counting times of 58-87%. Conclusions: We report on a method for collecting intraoperative data analytics regarding instrument usage via RFID technology. This system will help refine instrument selection, quantitate instrument utilization and prevent inadvertent retention in a patient. This should help increase efficiency in packaging and sterilization and let surgeons make objective decisions in the composition of surgical trays. Clinical and Translational Impact Statement-Intraoperative analytics of surgical tools and associated equipment may ultimately lead to safer more efficient surgeries that increase patient outcomes while decreasing the cost of care.


Assuntos
Aneurisma da Aorta Abdominal , Dispositivo de Identificação por Radiofrequência , Aneurisma da Aorta Abdominal/cirurgia , Humanos , Salas Cirúrgicas , Dispositivo de Identificação por Radiofrequência/métodos , Estudos Retrospectivos , Instrumentos Cirúrgicos
13.
Nanomaterials (Basel) ; 12(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009958

RESUMO

For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas at a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multiwalled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman "Graphitic/Defective" (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.37% to 14.31%. Since both the CNT diameters and the percentage yield increased following the addition of polystyrene, we conclude that carbon from PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid-washed Bucky papers produced from each loading ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, materials with different loadings were mixed to create the six wires of an Ethernet cable and tested using iPerf3; the cable achieved up- and down- link speeds of ~99.5 Mbps, i.e., comparable to Cu wire with the same dimensions (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for a use case in a Boeing 747-400 over the lifespan of the aircraft. Due to their lightweight nature, the CNT wires decreased the CO2 footprint by 21 kTonnes (kTe) over the aircraft's lifespan.

14.
J Phys Chem B ; 123(34): 7282-7289, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31429279

RESUMO

Boron dipyrromethene (BODIPY) molecular rotors have shown sensitivity toward viscosity, polarity, and temperature. Here, we report a 1,3,5,7-tetramethyl-8-phenyl-BODIPY modified with a polyethylene glycol (PEG) chain, for temperature sensing and live cell imaging. This new PEG-BODIPY dye presents an increase in nonradiative decay as temperature increases, which directly influences its lifetime. This change in lifetime is dependent on changes in both temperature and viscosity at low viscosity values, but is only dependent on temperature at high viscosity values. The dependence of fluorescence lifetime with temperature allows for temperature monitoring in vitro and in cells, with sub degree resolution. When in contact with cells, the PEG-BODIPY spontaneously penetrates and stains the cell but not the nucleus. Furthermore, no significant cell toxicity was found even at 100 µM concentration. Using fluorescence lifetime imaging microscopy (FLIM), we were able to observe the changes in the lifetime of PEG-BODIPY within the cell at different temperatures. The use of FLIM and molecular probes such as PEG-BODIPY can provide important information about cellular temperature and heat dissipation upon medically relevant stimuli, such as radiofrequency ablation and photodynamic therapy.


Assuntos
Compostos de Boro/análise , Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Termometria/métodos , Técnicas Biossensoriais/métodos , Temperatura Corporal , Compostos de Boro/química , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Imagem Óptica/métodos , Polietilenoglicóis/análise , Polietilenoglicóis/química , Temperatura , Viscosidade
15.
Nanomedicine (Lond) ; 13(23): 2981-2993, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30501557

RESUMO

AIM: Glycoconjugated C60 derivatives are of particular interest as potential cancer targeting agents due to an upregulated metabolic glucose demand, especially in the case of pancreatic adenocarcinoma and its dense stroma, which is known to be driven by a subset of pancreatic stellate cells. MATERIALS & METHODS: Herein, we describe the synthesis and biological characterization of a hexakis-glucosamine C60 derivative (termed 'Sweet-C60'). RESULTS: Synthesized fullerene derivative predominantly accumulates in the nucleus of pancreatic stellate cells; is inherently nontoxic up to concentrations of 1 mg/ml; and is photoactive when illuminated with blue and green light, allowing its use as a photodynamic therapy agent. CONCLUSION: Obtained glycoconjugated nanoplatform is a promising nanotherapeutic for pancreatic cancer.


Assuntos
Fulerenos/uso terapêutico , Glicoconjugados/síntese química , Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/efeitos dos fármacos , Fármacos Fotossensibilizantes/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Anticorpos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Fulerenos/efeitos adversos , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos adversos , Neoplasias Pancreáticas
16.
Sci Rep ; 8(1): 3474, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472563

RESUMO

Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias Mamárias Experimentais/radioterapia , Terapia por Radiofrequência , Linfócitos T/efeitos da radiação , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos da radiação , Citocinas/sangue , Feminino , Humanos , Hipertermia Induzida , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Linfócitos T/imunologia
17.
Transl Oncol ; 11(3): 664-671, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621664

RESUMO

Patients with pancreatic ductal adenocarcinomas (PDAC) have one of the poorest survival rates of all cancers. The main reason for this is related to the unique tumor stroma and poor vascularization of PDAC. As a consequence, chemotherapeutic drugs, such as nab-paclitaxel and gemcitabine, cannot efficiently penetrate into the tumor tissue. Non-invasive radiofrequency (RF) mild hyperthermia treatment was proposed as a synergistic therapy to enhance drug uptake into the tumor by increasing tumor vascular inflow and perfusion, thus, increasing the effect of chemotherapy. RF-induced hyperthermia is a safer and non-invasive technique of tumor heating compared to conventional contact heating procedures. In this study, we investigated the short- and long-term effects (~20 days and 65 days, respectively) of combination chemotherapy and RF hyperthermia in an orthotopic PDAC model in mice. The benefit of nab-paclitaxel and gemcitabine treatment was confirmed in mice; however, the effect of treatment was statistically insignificant in comparison to saline treated mice during long-term observation. The benefit of RF was minimal in the short-term and completely insignificant during long-term observation.

18.
Transl Oncol ; 11(4): 864-872, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29763773

RESUMO

Noninvasive radiofrequency-induced (RF) hyperthermia has been shown to increase the perfusion of chemotherapeutics and nanomaterials through cancer tissue in ectopic and orthotopic murine tumor models. Additionally, mild hyperthermia (37°C-45°C) has previously shown a synergistic anticancer effect when used with standard-of-care chemotherapeutics such as gemcitabine and Abraxane. However, RF hyperthermia treatment schedules remain unoptimized, and the mechanisms of action of hyperthermia and how they change when treating various tumor phenotypes are poorly understood. Therefore, pretreatment screening of tumor phenotypes to identify key tumors that are predicted to respond more favorably to hyperthermia will provide useful mechanistic data and may improve therapeutic outcomes. Herein, we identify key biophysical tumor characteristics in order to predict the outcome of combinational RF and chemotherapy treatment. We demonstrate that ultrasound imaging using Doppler mode can be utilized to predict the response of combinational RF and chemotherapeutic therapy in a murine 4T1 breast cancer model.

19.
Appl Phys Lett ; 110(1): 013701, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28104923

RESUMO

Aqueous and nanoparticle-based solutions have been reported to heat when exposed to an alternating radiofrequency (RF) electric-field. Although the theoretical models have been developed to accurately model such a behavior given the solution composition as well as the geometrical constraints of the sample holder, these models have not been investigated across a wide-range of solutions where the dielectric properties differ, especially with regard to the real permittivity. In this work, we investigate the RF heating properties of non-aqueous solutions composed of ethanol, propylene glycol, and glycine betaine with and without varying amounts of NaCl and LiCl. This allowed us to modulate the real permittivity across the range 25-132, as well as the imaginary permittivity across the range 37-177. Our results are in excellent agreement with the previously developed theoretical models. We have shown that different materials generate unique RF heating curves that differ from the standard aqueous heating curves. The theoretical model previously described is robust and accounts for the RF heating behavior of materials with a variety of dielectric properties, which may provide applications in non-invasive RF cancer hyperthermia.

20.
IEEE J Transl Eng Health Med ; 5: 1500109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507824

RESUMO

The Kanzius non-invasive radio-frequency hyperthermia system (KNiRFH) has been investigated as a treatment option for hepatic hyperthermia cancer therapy. The treatment involves exposing the patient to an external high-power RF (13.56 MHz) electric field, whereby the propagating waves penetrate deep into the tumor causing targeted heating based on differential tissue dielectric properties. However, a comprehensive examination of the Kanzius system alongside any associated toxicities and its ability to induce hepatic hyperthermia in larger animal models, such as swine, are the subjects of the work herein. Ten Yucatan female mini-swine were treated with the KNiRFH system. Two of the pigs were treated a total of 17 times over a five-week period to evaluate short- and long-term KNiRFH-associated toxicities. The remaining eight pigs were subjected to single exposure sessions to evaluate heating efficacy in liver tissue. Our goal was to achieve a liver target temperature of 43°C and to evaluate toxicities and burns post-treatment. Potential toxicities were evaluated by contrast-enhanced MRI of the upper abdomen and blood work, including complete metabolic panel, complete blood count, and liver enzymes. The permittivities of subcutaneous fat and liver were also measured, which were used to calculate tissue specific absorption rates (SAR). Our results indicate negligible KNiRFH-associated toxicities; however, due to fat overheating, liver tissue temperature did not exceed 38.5°C. This experimental limitation was corroborated by tissue permittivity and SAR calculations of subcutaneous fat and liver. Significant steps must be taken to either reduce subcutaneous fat heating or increase localized heating, potentially through the use of KNiRFH-active nanomaterials, such as gold nanoparticles or single-walled carbon nanotubes, which have previously shown promising results in murine cancer models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA