Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 101(4): 313-325, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947832

RESUMO

Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.


Assuntos
Frutose , Obesidade , Camundongos , Masculino , Animais , Frutose/efeitos adversos , Estresse Oxidativo , Inflamação , Encéfalo
2.
Scand J Med Sci Sports ; 31(3): 610-622, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33176018

RESUMO

Cryotherapy is a therapeutic modality widely used for the treatment of muscle injuries to control pain and inflammatory processes. This study aimed to investigate the effects of cryotherapy on the inflammatory and oxidative stress parameters and mechanical properties of, and pain in, the skeletal muscles of rats with lacerative muscle injury. The rats were anesthetized with 4% isoflurane and subjected to gastrocnemius muscle laceration injury. After injury, all animals in the intervention groups received cryotherapy treatment for 20 minutes using plastic bags containing crushed ice. The protocol comprised three daily applications at 3-hour intervals on the day of injury, with reapplication 24 hours later. Seventy-two male Wistar rats were divided into three groups: sham, muscle injury (MI), and MI + cryotherapy (MI + cryo). Muscle mechanical properties were analyzed by mechanical tensile testing on day 7 after injury. The MI + cryo group showed reduced TNF-α, IFN-γ, and IL1ß levels; elevated IL4, IL6, and IL10 levels; reduced oxidant production and carbonyl levels; and elevated sulfhydryl contents. Animals that underwent tissue cooling showed superoxide dismutase activity and glutathione levels close to those of the animals in the sham group. The MI and MI + cryo groups showed reduced values of the evaluated mechanical properties and lower mechanical thresholds compared to those of the animals from the sham group. Our results demonstrated that the proposed cryotherapy protocol reduced the inflammatory process and controlled oxidative stress but did not reverse the changes in the mechanical properties of muscle tissues or provide analgesic effects within the time frame analyzed.


Assuntos
Crioterapia , Lacerações/fisiopatologia , Lacerações/terapia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Cicatrização/fisiologia , Animais , Citocinas/sangue , Fluoresceínas/metabolismo , Glutationa/metabolismo , Inflamação/fisiopatologia , Masculino , Músculo Esquelético/metabolismo , Nitritos/metabolismo , Oxirredução , Estresse Oxidativo , Ratos Wistar , Superóxido Dismutase/metabolismo , Resistência à Tração
3.
Biochem Cell Biol ; 97(6): 693-701, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31774300

RESUMO

This study evaluated the effects of omega-3 polyunsaturated fatty acids (PUFAs) on oxidative stress and energy metabolism parameters in the visceral fat of a high-fat-diet induced obesity model. Energy intake, body mass, and visceral fat mass were also evaluated. Male Swiss mice received either a control diet (control group) or a high-fat diet (obese group) for 6 weeks. After this period, the groups were divided into control + saline, control + omega-3, obese + saline, and obese + omega-3, and to these groups 400 mg·(kg body mass)-1·day-1 of fish oil (or saline) was administered orally, for 4 weeks. Energy intake and body mass were monitored throughout the experiment. In the 10th week, the animals were euthanized and the visceral fat (mesenteric) was removed. Treatment with omega-3 PUFAs did not affect energy intake or body mass, but it did reduced visceral fat mass. In visceral fat, omega-3 PUFAs reduced oxidative damage and alleviated changes to the antioxidant defense system and the Krebs cycle. The mitochondrial respiratory chain was neither altered by obesity nor by omega-3 PUFAs. In conclusion, omega-3 PUFAs have beneficial effects on the visceral fat of obese mice because they mitigate changes caused by the consumption of a high-fat diet.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Obesidade/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos
4.
Antioxidants (Basel) ; 12(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37627569

RESUMO

This study aimed to evaluate and compare the effects of treatment with gold nanoparticles (GNPs) reduced with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) to a standard commercial treatment of the pharmacological type (Omcilon®) and an electrophysical agent (photobiomodulation) in the palatal wounds of rats. As for the in vitro assay, a cell viability test was performed to assess the toxicity of the synthesized nanoparticles. In vivo assay: 60 Wistar rats were divided into five groups (n = 12): I. Palatal Wound (PW); II. PW + Photobiomodulation (PBM); III. PW + Omcilon®; IV. PW + GNPs-Cur (0.025 mg/mL); V. PW + GNPs-Açai (0.025 mg/mL). Animals were first anesthetized, and circular lesions in the palatine mucosa were induced using a 4 mm-diameter punch. The first treatment session started 24 h after the injury and occurred daily for 5 days. The animals were euthanized, and the palatal mucosa tissue was removed for histological, biochemical, and molecular analysis. GNPs-Açai were able to significantly reduce pro-inflammatory cytokines and increase anti-inflammatory ones, reduce oxidant markers, and reduce inflammatory infiltrate while increasing the collagen area and contraction rate of the wound, along with an improved visual qualification. The present study demonstrated that the proposed therapies of GNPs synthesized greenly, thus associating their effects with those of plants, favor the tissue repair process in palatal wounds.

5.
Front Physiol ; 14: 1101159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895628

RESUMO

Introduction: Osteoarthritis (OA) is considered an inflammatory and degenerative joint disease, characterized by loss of hyaline joint cartilage and adjacent bone remodeling with the formation of osteophytes, accompanied by various degrees of functional limitation and reduction in the quality of life of individuals. The objective of this work was to investigate the effects of treatment with physical exercise on the treadmill and swimming in an animal model of osteoarthritis. Methods: Forty-eight male Wistar rats were divided (n=12 per group): Sham (S); Osteoarthritis (OA); Osteoarthritis + Treadmill (OA + T); Osteoarthritis + Swimming (OA + S). The mechanical model of OA was induced by median meniscectomy. Thirty days later, the animals started the physical exercise protocols. Both protocols were performed at moderate intensity. Forty-eight hours after the end of the exercise protocols, all animals were anesthetized and euthanized for histological, molecular, and biochemical parameters analysis. Results: Physical exercise performed on a treadmill was more effective in attenuating the action of pro-inflammatory cytokines (IFN-γ, TNF-α, IL1-ß, and IL6) and positively regulating anti-inflammatories such as IL4, IL10, and TGF-ß in relation to other groups. Discussion: In addition to maintaining a more balanced oxi-reductive environment within the joint, treadmill exercise provided a more satisfactory morphological outcome regarding the number of chondrocytes in the histological evaluation. As an outcome, better results were found in groups submitted to exercise, mostly treadmill exercise.

6.
Ann Biomed Eng ; 50(12): 1895-1910, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802205

RESUMO

A perfect graft for wound care must be readily available without affecting the immune response, covering and protecting the wound bed. Considering previous studies have already established the use of hyaluronic acid (HA) for the treatment of wounds but the data presented on the amniotic membrane (AM) and its promising effects on healing still requires further investigation, this study aimed to evaluate the effects of the application of a decellularized amniotic membrane solubilized with hyaluronic acid on the healing process of cutaneous wounds on the 7th and 14th day, to evaluate the evolution of the wound and the inflammatory phases in these two times. Cutaneous lesions were excised from the dorsal region and 96 Wistar rats were divided into four groups: I-Excisional wound (EW); II-EW + AM; III-EW + HA; IV-EW + AM + HA. The present study demonstrated that the proposed combined therapy favors the tissue repair process of the epithelial lesion. Results showed a reduction in pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, an increase in TGF-ß, and attenuation of oxidative stress, reducing the acute inflammatory response and promoting the beginning of tissue repair. We concluded that the proposed therapies accelerated the inflammatory process with anticipation of the repair phase.


Assuntos
Âmnio , Ácido Hialurônico , Ratos , Animais , Ácido Hialurônico/farmacologia , Cicatrização , Ratos Wistar , Citocinas
7.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421443

RESUMO

This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1ß, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-ß) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.

8.
Colloids Surf B Biointerfaces ; 196: 111302, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32777662

RESUMO

Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder, after Alzheimer's disease. Reserpine administration to animals has been suggested as a PD model based on the effects of this monoamine-depleting agent on motor activity. Studies show that gold nanoparticles (GNPs) are effective for treating neurodegenerative diseases when used at certain concentrations. The objective of the present study was to evaluate the effects of GNPs administration under behavioral and oxidative stress conditions in an experimental model of PD. Fourty male C57BL/6 mice (20-30 g) were used, The animals were divided into four groups (N = 6): Sham; Sham and GNPs; Reserpine; Reserpine and GNPs. Three doses at the concentration of 0.25 mg/kg reserpine were administered subcutaneously at 48 h intervals. Treatment with GNPs was administered with 2.5 mg/kg GNPs (20 nm) for five consecutive days. Our results showed the therapeutic potential of GNPs, where the parameters observed in behavioral tests and oxidative stress were reverted in GNP-treated mice. It also partially improved neurotrophic factors, which are necessary for the survival of neurons. GNPs reversed the symptoms of PD caused by the use of alkaline reserpine in C57BL/6 mice, especially without toxicity. The results of this study suggest that GNPs could have clinical potential as an inhibitor of inflammation and oxidative stress in the CNS, thereby alleviating the secondary neurodegenerative processes and neuronal cell death caused by reserpine. These beneficial effects of GNPs provide support for new analyses to better understanding in the process of PD degeneration.


Assuntos
Nanopartículas Metálicas , Doença de Parkinson , Animais , Modelos Animais de Doenças , Ouro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Tamanho da Partícula
9.
Mater Sci Eng C Mater Biol Appl ; 110: 110681, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204109

RESUMO

The use of nanotechnology for administering drugs is a recent development that presents promising results. Therapeutic Pulsed Ultrasound (TPU) is one such therapeutic option and is widely used for treating soft tissue lesions. Thus, the objective of this study was to investigate the therapeutic effect of phonophoresis using diclofenac (DC) linked to gold nanoparticles (GNPs) in the skeletal muscle of rats used as a model of traumatic muscular injury. Wistar rats were divided into eight groups (N = 10): Sham, Muscle injury (MI), MI + TPU, MI + DC, MI + GNPs, MI + TPU + DC, MI + TPU + GNPs, and MI + TPU + DC-GNPs. The traumatic injury was performed in the gastrocnemius with a single direct traumatic impact via an injuring press. The animals received daily treatment for 5 consecutive days with TPU and gel with DC and/or GNPs. Two hours after the last treatment session, animals were euthanized and the gastrocnemius muscle surgically removed for histological and biochemical analysis. The groups exposed to some therapies (MI + TPU + DC, MI + TPU + GNPs and MI + TPU + DC-GNPs) showed reduced levels of pro-inflammatory cytokines, whereas an increase in anti-inflammatory cytokine levels was observed in the group exposed to all therapies combined (MI + TPU + DC-GNPs). Reactive species production and protein damage resulting from oxidative damage was lower for the group exposed to all tested therapies had lower production. Lower protein damage was also observed in the TPU + GNPs group. The group that underwent all tested therapies combined showed a significant increase in antioxidants compared to the MI group. During histological analysis, the MI group showed large amounts of cell infiltration and centralized nuclei, whereas the MI + TPU + DC-GNPs group showed structural improvements. Pain levels in the MI + TPU + DC-GNPs group were lower than those of the MI group. We believe that the association of TPU with DC linked to GNPs decreases the inflammation caused by traumatic muscle injury and accelerates tissue repair.


Assuntos
Diclofenaco/uso terapêutico , Ouro/química , Nanopartículas Metálicas/química , Músculo Esquelético/lesões , Fonoforese , Ferimentos e Lesões/tratamento farmacológico , Animais , Catalase/metabolismo , Diclofenaco/farmacologia , Modelos Animais de Doenças , Glutationa/metabolismo , Hiperalgesia/complicações , Nanopartículas Metálicas/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxido Dismutase/metabolismo , Ferimentos e Lesões/complicações , Ferimentos e Lesões/patologia
10.
J Drug Target ; 28(3): 307-319, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31379221

RESUMO

Studies have shown the benefits of gold nanoparticles (GNPs) in muscle and epithelial injury models. In physiotherapy, the use of the microcurrent apparatus is associated with certain drugs (Iontophoresis) to increase the topical penetration and to associate the effects of both therapies. Therefore, the objective of this study was to investigate the effects of iontophoresis along with GNPs in the skeletal muscle of rats exposed to a traumatic muscle injury. We utilised 50 Wistar rats randomly divided in to five experimental groups (n = 10): Control group (CG); Muscle injury group (MI); MI + GNPs (20 nm, 30 mg kg-1); MI + Microcurrent (300 µA); and MI + Microcurrent + GNPs. The treatment was performed daily for 7 days, with the first session starting at 24 h after the muscle injury. The animals were sacrificed and the gastrocnemius muscle was surgically removedand stored for the proper evaluations. The group that received iontophoresis with GNPs showed significant differences in inflammation and oxidative stress parameters and in the histopathological evaluation showed preserved morphology. In addition, we observed an improvement in the locomotor response and pain symptoms of these animals. These results suggest that the association of boththerapies accelerates the inflammatory response of the injured limb.


Assuntos
Ouro/química , Iontoforese/métodos , Nanopartículas Metálicas/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Músculo Esquelético/lesões , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
11.
J Biomed Mater Res A ; 108(1): 103-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502356

RESUMO

The bacterial lipopolysaccharide (LPS) is a highly toxic molecule derived from the outer membrane of gram-negative bacteria. LPS endotoxin affects the lungs and is used as a model of acute pulmonary inflammation affecting the cellular morphology of the organ. Previously, gold nanoparticles (GNPs) have been shown to demonstrate anti-inflammatory and antioxidative activity in muscle and epithelial injury models. The objective of this study was to investigate the effect of the intraperitoneal treatment using GNPs on the inflammatory response and pulmonary oxidative stress induced by LPS. Wistar rats were divided into four groups (N = 10): Sham; Sham + GNPs 2.5 mg/kg; LPS; and LPS + GNPs 2.5 mg/kg. Treatment with LPS upregulated the levels of markers of cellular and hepatic damage (CK, LDH, AST, and alanine aminotransferase); however, the group treated with only GNPs exhibited no toxicity. Treatment with GNPs reversed LPS-induced changes with respect to total peritoneal leukocyte count and the pulmonary levels of pro-inflammatory cytokines (IFN-γ and IL-6). Histological analysis revealed that treatment with GNPs reversed the increase in alveolar septum thickness due to LPS-induced fibrosis. In addition, treatment with GNPs decreased production of oxidants (nitrite and DCFH), reduced oxidative damage (carbonyl and sulfhydryl), and downregulated activities of superoxide dismutase and catalase. Treatment with GNPs did not showed toxicity; however, it exhibited anti-inflammatory and antioxidative activity that reversed morphological alterations induced by LPS.


Assuntos
Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Pneumonia/patologia , Pneumonia/terapia , Doença Aguda , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Masculino , Nanopartículas Metálicas/ultraestrutura , Estresse Oxidativo , Pneumonia/enzimologia , Ratos Wistar , Espectrofotometria Ultravioleta
12.
Inflammation ; 43(6): 2232-2244, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32647956

RESUMO

Percutaneous collagen induction (PCI) is an alternative treatment for skin dysfunctions, it aims to stimulate collagen production by encouraging normal wound healing that occurs after any trauma by inducing microlesions; also it may be potentiated with the association with drugs such as hyaluronic acid (HA). Our objective was to evaluate the effects of PCI associated with hyaluronic acid (0.9%) on inflammatory process, oxidative stress, and collagen production in rat epidermis. For the study, 36 adult Wistar rats were randomly divided into 6 groups (n = 6): Control; PCI 0.5; PCI 1.0; HA; PCI 0.5 + HA; and PCI 1.0 + HA. The animals were anesthetized, trichotomized, and the application of therapies was performed once; After 7 days, the animals were euthanized for removal of the skin region. Levels of pro-inflammatory (IL1, IL6, TNFα), anti-inflammatory (IL4 and IL10) cytokines and growth factors (FGF, TGFß) were evaluated, besides oxidative stress parameters and histological analysis. In combination groups, there is a decrease in TNFα compared with the control and PCI groups in contrast to a significant increase in anti-inflammatory cytokines and growth factors. Oxidant and oxidative damage levels showed a significant decrease in PCI + HA groups in relation to PCI groups while antioxidant defense increased in PCI + HA groups compared with the control group. The number of fibroblasts was increased in the PCI 1.0 group in relation to the control, HA, and PCI 0.5. The number of blood vessels and collagen area was increased in groups PCI and PCI + HA compared with the HA group. We conclude that the combination of PCI with HA is able to accelerate the acute inflammatory process, reducing its deleterious effects and anticipating the chronic response, contributing to tissue repair.


Assuntos
Colágeno/metabolismo , Ácido Hialurônico/metabolismo , Inflamação , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Quimioterapia de Indução , Masculino , Intervenção Coronária Percutânea , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Cicatrização/efeitos dos fármacos
13.
ACS Biomater Sci Eng ; 6(9): 5132-5144, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455264

RESUMO

Healing is the process responsible for restoring the integrity of the body's internal or external structures when they rupture. Photobiomodulation (PBM) stands out as one of the most efficient resources in the treatment of epithelial lesions, as well as hyaluronic acid (HA), which has been emerging as a new molecule for the treatment of dermal and epidermal lesions. The biological application of gold nanoparticles (GNPs) shows promising results. This study aimed to investigate the possible anti-inflammatory and antioxidant effects of the association between PBM and GNPs-linked HA in an epithelial lesion model. Fifty Wistar rats were randomly distributed in the Control Group (CG); (PBM); (PBM + HA); (PBM + GNPs); (PBM + GNPs-HA). The animals were anesthetized, trichotomized, and induced to a surgical incision in the dorsal region. Topical treatment with HA (0.9%) and/or GNPs (30 mg/kg) occurred daily associated with 904 nm laser irradiation, dose of 5 J/cm2, which started 24 h after the lesion and was performed daily until the seventh day. The levels of proinflammatory (IL1 and TNFα), anti-inflammatory (IL10 and IL4) and growth factors (FGF and TGFß) cytokines and oxidative stress parameters were evaluated, besides histological analysis through inflammatory infiltrate, fibroblasts, new vessels, and collagen production area. Finally, for the analysis of wound size reduction, digital images were performed and subsequently analyzed by the IMAGEJ software. The treated groups showed a decrease in proinflammatory cytokine levels and an increase in anti-inflammatory cytokines. TGFß and FGF levels also increased in the treated groups, especially in the combination therapy group (PBM + GNPs-HA). Regarding the oxidative stress parameters, MPO, DCF, and Nitrite levels decreased in the treated groups, as well as the oxidative damage (Carbonyl and Thiol groups). In contrast, antioxidant defense increased in the groups with the appropriate therapies proposed compared to the control group. Histological sections were analyzed where the inflammatory infiltrate was lower in the PBM + GNPs-HA group. The number of fibroblasts was higher in the PBM and PBM + HA treated groups, whereas collagen production was higher in all treated groups. Finally, in the analysis of the wound area contraction, the injury group presented a larger area in cm2 compared to the other groups. Taken together, these results allow us to observe that the combination of PBM + GNPs-HA optimized the secretion of anti-inflammatory cytokines, proliferation and cell differentiation growth factors, and made an earlier transition to the chronic phase, contributing to the repair process.


Assuntos
Terapia com Luz de Baixa Intensidade , Nanopartículas Metálicas , Animais , Ouro , Ácido Hialurônico , Ratos , Ratos Wistar , Cicatrização
14.
Eur J Pharm Sci ; 143: 105120, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31669424

RESUMO

The repair process consists of molecular and cellular events that can be accelerated by specific therapies. Considering this, the objective of this study was to evaluate the effects of ibuprofen phonophoresis associated with gold nanoparticles in the animal model of traumatic muscle injury. Was used 80 male wistar rats divided into eight groups: Sham; Muscle injury (MI); MI + therapeutic pulsed ultrasound (TPU); MI + Ibuprofen (IBU); MI + GNPs; MI + TPU+ IBU; MI + TPU + GNPs and MI + TPU + IBU + GNPs. The lesion in the gastrocnemius was performed by a single direct trauma impact on the injured press. The animals were treated with pulsed ultrasound and the gel with gold nanoparticles and/or ibuprofen. The treatment was applied daily for 5 days and the first session was 12 h after the muscle injury. The gastrocnemius muscle was surgically removed for analyzes biochemical, molecular and histological. In the analyzes only the MI + TPU + IBU + GNPs group showed a reduction in TNF-a and IL-1 levels, with a concomitant increase in the levels of anti-inflammatory cytokines. In the analysis of oxidative stress, only the MI + TPU + IBU + GNPs group presented a reversal of the condition when compared to the MI group. In the histological analysis, the MI group presented a large cell infiltrate and a centralized nucleus and only the MI + TPU + IBU + GNPs group showed a structural improvement, also in the pain results the MI + TPU + IBU + GNPs showed a significant difference in comparison to the MI group (p<0.01). We believe that the effects of phonophoresis with anti-inflammatory drugs associated with gold nanoparticles may potentiate the reduction of the inflammatory response and regulate the cellular redox state.


Assuntos
Analgésicos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Ouro/administração & dosagem , Ibuprofeno/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Músculo Esquelético/lesões , Doenças Musculares/tratamento farmacológico , Fonoforese , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Masculino , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Doenças Musculares/imunologia , Doenças Musculares/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA