Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 10, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166940

RESUMO

BACKGROUND: Intravenous administration of fibrinolytic drugs, such as recombinant tissue plasminogen activator (rtPA) is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and risk of hemorrhagic transformations. Platelet membrane-based nanocarriers have received increasing attention for ischemic stroke therapies, as they have natural thrombus-targeting activity, can prolong half-life of the fibrinolytic therapy, and reduce side effects. In this study we have gone further in developing platelet-derived nanocarriers (defined as cellsomes) to encapsulate and protect rtPA from degradation. Following lyophilization and characterization, their formulation properties, biocompatibility, therapeutic effect, and risk of hemorrhages were later investigated in a thromboembolic model of stroke in mice. RESULTS: Cellsomes of 200 nm size and loaded with rtPA were generated from membrane fragments of human platelets. The lyophilization process did not influence the nanocarrier size distribution, morphology, and colloidal stability conferring particle preservation and long-term storage. Encapsulated rtPA in cellsomes and administered as a single bolus showed to be as effective as a continuous clinical perfusion of free rtPA at equal concentration, without increasing the risk of hemorrhagic transformations or provoking an inflammatory response. CONCLUSIONS: This study provides evidence for the safe and effective use of lyophilized biomimetic platelet-derived nanomedicine for precise thrombolytic treatment of acute ischemic stroke. In addition, this new nanoformulation could simplify the clinical use of rtPA as a single bolus, being easier and less time-consuming in an emergency setting than a treatment perfusion, particularly in stroke patients. We have successfully addressed one of the main barriers to drug application and commercialization, the long-term storage of nanomedicines, overcoming the potential chemical and physical instabilities of nanomedicines when stored in an aqueous buffer.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Ativador de Plasminogênio Tecidual , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Terapia Trombolítica/efeitos adversos , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia
2.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062782

RESUMO

Sham control groups are essential in experimental animal studies to reduce the influence of surgical intervention. The intraluminal filament procedure is one of the most common models of middle cerebral artery occlusion (MCAO) used in the study of brain ischemia. However, a sham group is usually not included in the experimental design of these studies. In this study, we aimed to evaluate the relevance of the sham group by analyzing and comparing the brain protein profiles of the sham and MCAO groups. In the sham group, 98 dysregulated proteins were detected, compared to 171 in the ischemic group. Moreover, a comparative study of protein profiles revealed the existence of a pool of 57 proteins that appeared to be dysregulated in both sham and ischemic animals. These results indicated that the surgical procedure required for the intraluminal occlusion of the middle cerebral artery (MCA) induces changes in brain protein expression that are not associated with ischemic lesions. This study highlights the importance of including sham control groups in the experimental design, to ensure that surgical intervention does not affect the therapeutic target under study.


Assuntos
Isquemia Encefálica , Encéfalo , Infarto da Artéria Cerebral Média , Proteômica , Animais , Proteômica/métodos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Modelos Animais de Doenças , Proteoma/metabolismo
3.
ACS Pharmacol Transl Sci ; 7(3): 680-692, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481701

RESUMO

While stroke represents one of the main causes of death worldwide, available effective drug treatment options remain limited to classic thrombolysis with recombinant tissue plasminogen activator (rtPA) for arterial-clot occlusion. Following stroke, multiple pathways become engaged in producing a vicious proinflammatory cycle through the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1) and heat shock protein 70 kDa (HSP72). HMGB1, in particular, can activate proinflammatory cytokine production when acetylated (AcHMGB1), a form that prefers cytosolic localization and extracellular release. This study aimed at determining how HMGB1 and HSP72 are modulated and affected following treatment with the anti-inflammatory compound resveratrol and novel platelet membrane-derived nanocarriers loaded with rtPA (CSM@rtPA) recently developed by our group for ischemic artery recanalization. Under ischemic conditions of oxygen-glucose deprivation (OGD), nuclear abundance of HMGB1 and AcHMGB1 in microglia and macrophages decreased, whereas treatment with CSM@rtPA did not alter nuclear or cytosolic abundance. Resveratrol treatment markedly increased the cytosolic abundance of HSP72 in microglia. Using proximity ligation assays, we determined that HSP72 interacted with HMGB1 and with acetylated HMGB1. The interaction was differentially affected under the OGD conditions. Resveratrol treatment under the OGD further decreased HSP72-HMGB1 interactions, whereas, in contrast, treatment increased HSP72-AcHMGB1 interactions in microglia. This study points out a salient molecular interaction suited for a two-pronged nanotherapeutic intervention in stroke: enhancement of rtPA's thrombolytic activity and modulation of cytosolic interactions between HMGB1 and HSP72 by resveratrol.

4.
Neuroscience ; 550: 30-42, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38387732

RESUMO

The constant failure of new neuroprotective therapies for ischemic stroke has partially halted the search for new therapies in recent years, mainly because of the high investment risk required to develop a new treatment for a complex pathology, such as stroke, with a narrow intervention window and associated comorbidities. However, owing to recent progress in understanding the stroke pathophysiology, improvement in patient care in stroke units, development of new imaging techniques, search for new biomarkers for early diagnosis, and increasingly widespread use of mechanical recanalization therapies, new opportunities have opened for the study of neuroprotection. This review summarizes the main protective agents currently in use, some of which are already in the clinical evaluation phase. It also includes an analysis of how recanalization therapies, new imaging techniques, and biomarkers have improved their efficacy.


Assuntos
AVC Isquêmico , Neuroproteção , Fármacos Neuroprotetores , Humanos , AVC Isquêmico/terapia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Animais , Neuroproteção/fisiologia
5.
J Cereb Blood Flow Metab ; 44(8): 1306-1318, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38436292

RESUMO

Alteplase (rtPA) remains the standard thrombolytic drug for acute ischemic stroke. However, new rtPA-derived molecules, such as tenecteplase (TNK), with prolonged half-lives following a single bolus administration, have been developed. Although TNK is currently under clinical evaluation, the limited preclinical data highlight the need for additional studies to elucidate its benefits. The toxicities of rtPA and TNK were evaluated in endothelial cells, astrocytes, and neuronal cells. In addition, their in vivo efficacy was independently assessed at two research centers using an ischemic thromboembolic mouse model. Both therapies were tested via early (20 and 30 min) and late administration (4 and 4.5 h) after stroke. rtPA, but not TNK, caused cell death only in neuronal cultures. Mice were less sensitive to thrombolytic therapies than humans, requiring doses 10-fold higher than the established clinical dose. A single bolus dose of 2.5 mg/kg TNK led to an infarct reduction similar to perfusion with 10 mg/kg of rtPA. Early administration of TNK decreased the hemorrhagic transformations compared to that by the early administration of rtPA; however, this result was not obtained following late administration. These two independent preclinical studies support the use of TNK as a promising reperfusion alternative to rtPA.


Assuntos
Fibrinolíticos , Tenecteplase , Ativador de Plasminogênio Tecidual , Animais , Tenecteplase/uso terapêutico , Ativador de Plasminogênio Tecidual/uso terapêutico , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Fibrinolíticos/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/administração & dosagem , Camundongos , Humanos , Masculino , Acidente Vascular Cerebral/tratamento farmacológico , Modelos Animais de Doenças , AVC Isquêmico/tratamento farmacológico , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA