Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br Poult Sci ; 63(1): 14-20, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34633873

RESUMO

1. The aim of this study was to determine the pharmacokinetics of meloxicam (MLX, 1 mg/kg body weight (BW)), ketoprofen (KETO, 2 mg/kg BW), and tolfenamic acid (TA, 2 mg/kg BW) in chukar partridge (Alectoris chukar) following intravenous (IV) administration.2. Twenty-four healthy chukar partridges were randomly divided into three equal groups (n = 8) as MLX, KETO and TA. Plasma concentrations of MLX, KETO and TA were measured using high-performance liquid chromatography-ultraviolet detection and analysed using non-compartmental analysis.3. No adverse effects were determined in chukar partridges after IV administration of MLX, KETO and TA. MLX, KETO and TA were detected in plasma up to 10, 12 and 12 h, respectively. The terminal elimination half-life of MLX, KETO and TA was 1.22, 1.77 and 1.95 h, respectively. MLX, KETO and TA exhibited volumes of distribution at a steady-state of 0.03, 0.23 and 0.41 l/kg BW, respectively. The total plasma clearance of MLX, KETO and TA was 0.02, 0.11 and 0.15 l/h/kg, respectively. The extraction ratios for MLX, KETO and TA were calculated as 0.002, 0.011 and 0.016, respectively.4. MLX, KETO and TA offer treatment in chukar partridges for various conditions with an absence of adverse reactions and properties such as short elimination half-life and low volume of distribution. However, there is a need to establish the safety and adverse effects of repeated administration, pharmacokinetics of other administration routes and pharmacological efficacy of MLX, KETO and TA in chukar partridges.


Assuntos
Galliformes , Cetoprofeno , Animais , Galinhas , Meloxicam , ortoaminobenzoatos
2.
Pol J Vet Sci ; 26(1): 5-12, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36961261

RESUMO

The aim of this study was to investigate the cardiotoxic effect of the combination of tilmicosin and diclofenac sodium in sheep. Thirty-two sheep were used and were randomly divided into four equal groups as tilmicosin (T), diclofenac sodium (D), tilmicosin+diclofenac sodium (TD) and control (C) group. Group T received a single dose of tilmicosin, Group D was administered diclofenac sodium once a day for 3 days, and group TD was administered diclofenac and tilmicosin at the same doses as group T and D. Group C received NaCl in a similar way. The blood samples were taken before dosing and at 4th, 8th, 24th and 72nd hour post-dosing for measurement of cardiac markers such as H-FABP, cTn-I, CK-MB. H-FABP level of group TD was found to be significantly (p⟨0.05) higher than of group C at the 8th, 24th and 72nd hour and group D and T at the 72nd hour. cTn-I and CK-MB levels of group TD were found significantly (p⟨0.05) higher compared with other groups. In conclusion, the combined use of tilmicosin and diclofenac in sheep causes an increase in cardiac biomarkers and it can be stated that this combination of drugs may cause cardiac damage.


Assuntos
Diclofenaco , Coração , Animais , Ovinos , Diclofenaco/toxicidade , Proteína 3 Ligante de Ácido Graxo , Biomarcadores
3.
Transl Psychiatry ; 6(9): e894, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27648916

RESUMO

Ketamine, at sub-anesthetic doses, is reported to rapidly decrease depression symptoms in patients with treatment-resistant major depressive disorder (MDD). Many patients do not respond to currently available antidepressants, (for example, serotonin reuptake inhibitors), making ketamine and its enantiomer, esketamine, potentially attractive options for treatment-resistant MDD. Although mechanisms by which ketamine/esketamine may produce antidepressant effects have been hypothesized on the basis of preclinical data, the neurobiological correlates of the rapid therapeutic response observed in patients receiving treatment have not been established. Here we use a pharmacometabolomics approach to map global metabolic effects of these compounds in treatment-refractory MDD patients upon 2 h from infusion with ketamine (n=33) or its S-enantiomer, esketamine (n=20). The effects of esketamine on metabolism were retested in the same subjects following a second exposure administered 4 days later. Two complementary metabolomics platforms were used to provide broad biochemical coverage. In addition, we investigated whether changes in particular metabolites correlated with treatment outcome. Both drugs altered metabolites related to tryptophan metabolism (for example, indole-3-acetate and methionine) and/or the urea cycle (for example, citrulline, arginine and ornithine) at 2 h post infusion (q<0.25). In addition, we observed changes in glutamate and circulating phospholipids that were significantly associated with decreases in depression severity. These data provide new insights into the mechanism underlying the rapid antidepressant effects of ketamine and esketamine, and constitute some of the first detailed metabolomics mapping for these promising therapies.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ketamina/uso terapêutico , Metabolômica , Adulto , Arginina/metabolismo , Citrulina/metabolismo , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Resistente a Tratamento/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Infusões Intravenosas , Masculino , Metionina/metabolismo , Pessoa de Meia-Idade , Ornitina/metabolismo , Fenótipo , Fosfolipídeos/metabolismo , Triptofano/metabolismo , Ureia/metabolismo
4.
Reprod Toxicol ; 33(2): 174-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22182468

RESUMO

Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental toxicity. All exposures were by immersion from 6-8 h post fertilization (hpf) to 5 days post fertilization (dpf); nominal concentration range of 1 nM-80 µM. On 6 dpf larvae were assessed for death and overt structural defects. Results revealed that the majority (62%) of chemicals were toxic to the developing zebrafish; both toxicity incidence and potency was correlated with chemical class and hydrophobicity (logP); and inter-and intra-plate replicates showed good agreement. The zebrafish embryo screen, by providing an integrated model of the developing vertebrate, compliments the ToxCast assay portfolio and has the potential to provide information relative to overt and organismal toxicity.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Praguicidas/toxicidade , Teratogênicos/toxicidade , Peixe-Zebra , Animais , Modelos Animais , Bibliotecas de Moléculas Pequenas , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA