Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Cell ; 186(3): 577-590.e16, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693373

RESUMO

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.


Assuntos
Dopamina , Tato , Camundongos , Masculino , Feminino , Animais , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Recompensa , Neurônios Dopaminérgicos/metabolismo , Optogenética , Receptores Acoplados a Proteínas G/metabolismo
2.
Cell ; 183(3): 605-619.e22, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031743

RESUMO

Exploration of novel environments ensures survival and evolutionary fitness. It is expressed through exploratory bouts and arrests that change dynamically based on experience. Neural circuits mediating exploratory behavior should therefore integrate experience and use it to select the proper behavioral output. Using a spatial exploration assay, we uncovered an experience-dependent increase in momentary arrests in locations where animals arrested previously. Calcium imaging in freely exploring mice revealed a genetically and projection-defined neuronal ensemble in the basolateral amygdala that is active during self-paced behavioral arrests. This ensemble was recruited in an experience-dependent manner, and closed-loop optogenetic manipulation of these neurons revealed that they are sufficient and necessary to drive experience-dependent arrests during exploration. Projection-specific imaging and optogenetic experiments revealed that these arrests are effected by basolateral amygdala neurons projecting to the central amygdala, uncovering an amygdala circuit that mediates momentary arrests in familiar places but not avoidance or anxiety/fear-like behaviors.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Núcleo Central da Amígdala/fisiologia , Comportamento Exploratório/fisiologia , Rede Nervosa/fisiologia , Animais , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/diagnóstico por imagem , Feminino , Locomoção , Aprendizado de Máquina , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Imagem Óptica
3.
Cell ; 166(3): 703-715, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27453468

RESUMO

The performance of an action relies on the initiation and execution of appropriate movement sequences. Two basal ganglia pathways have been classically hypothesized to regulate this process via opposing roles in movement facilitation and suppression. By using a series of state-dependent optogenetic manipulations, we dissected the contributions of each pathway and found that both the direct striatonigral pathway and the indirect striatopallidal pathway are necessary for smooth initiation and the execution of learned action sequences. Optogenetic inhibition or stimulation of each pathway before sequence initiation increased the latency for initiation: manipulations of the striatonigral pathway activity slowed action initiation, and those of the striatopallidal pathway aborted action initiation. The inhibition of each pathway after initiation also impaired ongoing execution. Furthermore, the subtle activation of striatonigral neurons sustained the performance of learned sequences, while striatopallidal manipulations aborted ongoing performance. These results suggest a supportive versus permissive model, where patterns of coordinated activity, rather than the relative amount of activity in these pathways, regulate movement initiation and execution.


Assuntos
Corpo Estriado/fisiologia , Vias Neurais/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Gânglios da Base/fisiologia , Corpo Estriado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Movimento , Neurônios/fisiologia , Optogenética
4.
Nature ; 626(7999): 583-592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092040

RESUMO

Animals exhibit a diverse behavioural repertoire when exploring new environments and can learn which actions or action sequences produce positive outcomes. Dopamine release after encountering a reward is critical for reinforcing reward-producing actions1-3. However, it has been challenging to understand how credit is assigned to the exact action that produced the dopamine release during continuous behaviour. Here we investigated this problem in mice using a self-stimulation paradigm in which specific spontaneous movements triggered optogenetic stimulation of dopaminergic neurons. Dopamine self-stimulation rapidly and dynamically changes the structure of the entire behavioural repertoire. Initial stimulations reinforced not only the stimulation-producing target action, but also actions similar to the target action and actions that occurred a few seconds before stimulation. Repeated pairings led to a gradual refinement of the behavioural repertoire to home in on the target action. Reinforcement of action sequences revealed further temporal dependencies of refinement. Action pairs spontaneously separated by long time intervals promoted a stepwise credit assignment, with early refinement of actions most proximal to stimulation and subsequent refinement of more distal actions. Thus, a retrospective reinforcement mechanism promotes not only reinforcement, but also gradual refinement of the entire behavioural repertoire to assign credit to specific actions and action sequences that lead to dopamine release.


Assuntos
Dopamina , Aprendizagem , Reforço Psicológico , Recompensa , Animais , Camundongos , Tomada de Decisões/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Aprendizagem/fisiologia , Optogenética , Fatores de Tempo , Modelos Psicológicos , Modelos Neurológicos
5.
Annu Rev Neurosci ; 42: 459-483, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31018098

RESUMO

Deciding what to do and when to move is vital to our survival. Clinical and fundamental studies have identified basal ganglia circuits as critical for this process. The main input nucleus of the basal ganglia, the striatum, receives inputs from frontal, sensory, and motor cortices and interconnected thalamic areas that provide information about potential goals, context, and actions and directly or indirectly modulates basal ganglia outputs. The striatum also receives dopaminergic inputs that can signal reward prediction errors and also behavioral transitions and movement initiation. Here we review studies and models of how direct and indirect pathways can modulate basal ganglia outputs to facilitate movement initiation, and we discuss the role of cortical and dopaminergic inputs to the striatum in determining what to do and if and when to do it. Complex but exciting scenarios emerge that shed new light on how basal ganglia circuits modulate self-paced movement initiation.


Assuntos
Gânglios da Base/fisiologia , Cognição/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia , Animais , Humanos , Atividade Motora/fisiologia , Recompensa
6.
Nat Rev Neurosci ; 23(6): 342-360, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35422525

RESUMO

The execution and learning of diverse movements involve neuronal networks distributed throughout the nervous system. The brainstem and basal ganglia are key for processing motor information. Both harbour functionally specialized populations stratified on the basis of axonal projections, synaptic inputs and gene expression, revealing a correspondence between circuit anatomy and function at a high level of granularity. Neuronal populations within both structures form multistep processing chains dedicated to the execution of specific movements; however, the connectivity and communication between these two structures is only just beginning to be revealed. The brainstem and basal ganglia are also embedded into wider networks and into systems-level loops. Important networking components include broadcasting neurons in the cortex, cerebellar output neurons and midbrain dopaminergic neurons. Action-specific circuits can be enhanced, vetoed, work in synergy or competition with others, or undergo plasticity to allow adaptive behaviour. We propose that this highly specific organization of circuits in the motor system is a core ingredient for supporting behavioural specificity, and at the same time for providing an adequate substrate for behavioural flexibility.


Assuntos
Gânglios da Base , Movimento , Gânglios da Base/fisiologia , Tronco Encefálico , Humanos , Interneurônios , Movimento/fisiologia , Vias Neurais/fisiologia , Neurônios
7.
8.
Nature ; 574(7777): 254-258, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534216

RESUMO

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Assuntos
Encéfalo/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Homeostase/efeitos da radiação , Intestinos/imunologia , Intestinos/efeitos da radiação , Luz , Linfócitos/imunologia , Linfócitos/efeitos da radiação , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Relógios Biológicos/genética , Relógios Biológicos/efeitos da radiação , Encéfalo/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/imunologia , Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Comportamento Alimentar/efeitos da radiação , Feminino , Microbioma Gastrointestinal/efeitos da radiação , Imunidade Inata/efeitos da radiação , Intestinos/citologia , Metabolismo dos Lipídeos , Linfócitos/metabolismo , Masculino , Camundongos , Fotoperíodo
9.
Curr Issues Mol Biol ; 46(5): 3763-3793, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785503

RESUMO

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.

10.
Nature ; 554(7691): 244-248, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420469

RESUMO

Deciding when and whether to move is critical for survival. Loss of dopamine neurons (DANs) of the substantia nigra pars compacta (SNc) in patients with Parkinson's disease causes deficits in movement initiation and slowness of movement. The role of DANs in self-paced movement has mostly been attributed to their tonic activity, whereas phasic changes in DAN activity have been linked to reward prediction. This model has recently been challenged by studies showing transient changes in DAN activity before or during self-paced movement initiation. Nevertheless, the necessity of this activity for spontaneous movement initiation has not been demonstrated, nor has its relation to initiation versus ongoing movement been described. Here we show that a large proportion of SNc DANs, which did not overlap with reward-responsive DANs, transiently increased their activity before self-paced movement initiation in mice. This activity was not action-specific, and was related to the vigour of future movements. Inhibition of DANs when mice were immobile reduced the probability and vigour of future movements. Conversely, brief activation of DANs when mice were immobile increased the probability and vigour of future movements. Manipulations of dopamine activity after movement initiation did not affect ongoing movements. Similar findings were observed for the initiation and execution of learned action sequences. These findings causally implicate DAN activity before movement initiation in the probability and vigour of future movements.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Movimento/fisiologia , Animais , Dopamina/metabolismo , Masculino , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Probabilidade , Desempenho Psicomotor , Recompensa , Substância Negra/citologia , Substância Negra/fisiologia
11.
Environ Res ; 257: 119274, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821456

RESUMO

Bracken fern (Pteridium spp.) is a highly problematic plant worldwide due to its toxicity in combination with invasive properties on former farmland, in deforested areas and on disturbed natural habitats. The carcinogenic potential of bracken ferns has caused scientific and public concern for six decades. Its genotoxic effects are linked to illudane-type glycosides (ITGs), their aglycons and derivatives. Ptaquiloside is considered the dominating ITG, but with significant contributions from other ITGs. The present review aims to compile evidence regarding environmental pollution by bracken fern ITGs, in the context of their human and animal health implications. The ITG content in bracken fern exhibits substantial spatial, temporal, and chemotaxonomic variation. Consumption of bracken fern as food is linked to human gastric cancer but also causes urinary bladder cancers in bovines browsing on bracken. Genotoxic metabolites are found in milk and meat from bracken fed animals. ITG exposure may also take place via contaminated water with recent data pointing to concentrations at microgram/L-level following rain events. Airborne ITG-exposure from spores and dust has also been documented. ITGs may synergize with major biological and environmental carcinogens like papillomaviruses and Helicobacter pylori to induce cancer, revealing novel instances of chemical and biological co-carcinogenesis. Thus, the emerging landscape from six decades of bracken research points towards a global environmental problem with increasingly complex health implications.

12.
Neurobiol Dis ; 176: 105930, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414182

RESUMO

Levodopa (L-DOPA) administration remains the gold standard therapy for Parkinson's disease (PD). Despite several pharmacological advances in the use of L-DOPA, a high proportion of chronically treated patients continues to suffer disabling involuntary movements, namely, L-DOPA-induced dyskinesias (LIDs). As part of the effort to stop these unwanted side effects, the present study used a rodent model to identify and manipulate the striatal outflow circuitry responsible for LIDs. To do so, optogenetic technology was used to activate separately the striatal direct (D1R- expressing) and indirect (D2R- expressing) pathways in a mouse model of PD. Firstly, D1-cre or A2a-cre animals received unilateral injections of neurotoxin 6-hydroxydopamine (6-OHDA) to simulate the loss of dopamine observed in PD patients. The effects of independently stimulating each pathway were tested to see if experimental dyskinesias could be induced. Secondly, dopamine depleted A2a-cre animals received systemic L-DOPA to evoke dyskinetic movements. The ability of indirect pathway optogenetic stimulation to suppress pre-established LIDs was then tested. Selective manipulation of direct pathway evoked optodyskinesias both in dopamine depleted and intact animals, but optical inhibition of these neurons failed to suppress LIDs. On the other hand, selective activation of indirect striatal projection neurons produced an immediate and reliable suppression of LIDs. Thus, a functional dissociation has been found here whereby activation of D1R- and D2R-expressing projection neurons evokes and inhibits LIDs respectively, supporting the notion of tight interaction between the two striatal efferent systems in both normal and pathological conditions. This points to the importance of maintaining an equilibrium in the activity of both striatal pathways to produce normal movement. Finally, the ability of selective indirect pathway optogenetic activation to block the expression of LIDs in an animal model of PD sheds light on intrinsic mechanisms responsible for striatal-based dyskinesias and identifies a potential therapeutic target for suppressing LIDs in PD patients.


Assuntos
Discinesias , Doença de Parkinson , Camundongos , Animais , Levodopa/farmacologia , Dopamina/metabolismo , Doença de Parkinson/metabolismo , Corpo Estriado/metabolismo , Oxidopamina/toxicidade , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças
13.
Biomarkers ; 28(7): 617-627, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942654

RESUMO

INTRODUCTION: High-risk human papillomavirus (HPV) is the aetiological agent of cervical cancer, which remains the fourth leading cause of cancer death in women worldwide. K14-HPV16 transgenic mice are a model for HPV-induced cancers, which undergo multistep squamous carcinogenesis at the skin, that is histologically and molecularly similar to carcinogenesis of the human cervix. Previous screens of differentially regulated microRNAs (miRs) using K14-HPV16 mice showed a role for miR-21, miR-155, miR-150, miR-146a, miR-125b and miR-223 during carcinogenesis. METHODS: We now aim to translate these observations into the clinical setting, using data provided by The Cancer Genome Atlas (TCGA) to explore whether those microRNAs can influence the survival of cervical cancer patients. RESULTS: Results showed that low miR-150, miR-155 and miR-146a expression levels in primary tumours were associated with poor overall survival. However, only miR-150 and miR-155 were found to be independent predictors, increasing the risk of death. When patients were stratified by clinical stage, low miR-150, miR-155, miR-146a and miR-125b were associated with poor survival for clinical stages I and II. Only low miR-150 expression increased the death risk. CONCLUSION: We conclude that miR-150 and miR-155 may be potentially applied as prognostic biomarkers in cervical cancer patients. However, further investigation is required to determine their applicability.


Assuntos
MicroRNAs , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Biomarcadores Tumorais/genética , Carcinogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Prognóstico , Neoplasias do Colo do Útero/genética
14.
Pathobiology ; 90(5): 333-343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040716

RESUMO

INTRODUCTION: Genomic variants of the human papillomavirus type 16 (HPV16) are thought to play differential roles in the susceptibility to head and neck squamous cell carcinomas (HNSCC) and its biological behaviour. This study aimed to establish the prevalence of HPV16 variants in an HNSCC cohort and associate them with clinical pathological characteristics and patient survival. METHODS: We retrieved samples and clinical data from 68 HNSCC patients. DNA samples were available from tumour biopsy at the time of the primary diagnosis. Targeted next-generation sequencing was used to obtain whole-genome sequences, and variants were established based on phylogenetic classification. RESULTS: 74% of samples clustered in lineage A, 5.7% in lineage B, 2.9% in lineage C, and 17.1% in lineage D. Comparative genome analysis revealed 243 single nucleotide variations. Of these, one hundred were previously reported, according to our systematic review. No significant associations with clinical pathological variables or patient survival were observed. The E6 amino acid variations E31G, L83V, and D25E and E7 N29S, associated with cervical cancer, were not observed, except for N29S in a single patient. CONCLUSION: These results provide a comprehensive genomic map of HPV16 in HSNCC, highlighting tissue-specific characteristics which will help design tailored therapies for cancer patients.

15.
Cell ; 135(3): 549-60, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18984165

RESUMO

We uncovered a role for ERK signaling in GABA release, long-term potentiation (LTP), and learning, and show that disruption of this mechanism accounts for the learning deficits in a mouse model for learning disabilities in neurofibromatosis type I (NF1). Our results demonstrate that neurofibromin modulates ERK/synapsin I-dependent GABA release, which in turn modulates hippocampal LTP and learning. An Nf1 heterozygous null mutation, which results in enhanced ERK and synapsin I phosphorylation, increased GABA release in the hippocampus, and this was reversed by pharmacological downregulation of ERK signaling. Importantly, the learning deficits associated with the Nf1 mutation were rescued by a subthreshold dose of a GABA(A) antagonist. Accordingly, Cre deletions of Nf1 showed that only those deletions involving inhibitory neurons caused hippocampal inhibition, LTP, and learning abnormalities. Importantly, our results also revealed lasting increases in GABA release triggered by learning, indicating that the mechanisms uncovered here are of general importance for learning.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes da Neurofibromatose 1 , Aprendizagem , Potenciação de Longa Duração , Neurofibromina 1/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Deficiências da Aprendizagem/fisiopatologia , Masculino , Camundongos , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/genética , Fosforilação , Sinapsinas/metabolismo
16.
J Relig Health ; 62(3): 1780-1809, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36462092

RESUMO

This review examined the effects of private and communal participatory prayer on pain. Nine databases were searched. Six randomized controlled trials were included. For private prayer, medium to large effects emerged for 67% to 69% of between-group comparisons; participants in the prayer condition reported lower pain intensity (0.59 < d < 26.17; 4 studies) and higher pain tolerance (0.70 < d < 1.05; 1 study). Pre- to post-intervention comparisons yielded medium to large effects (0.76 < d < 1.67; 2 studies); pain intensity decreased. Although firm conclusions cannot be made because meta-analysis was based on only two studies, the analysis suggested prayer might reduce pain intensity (SMD = - 2.63, 95% CI [- 3.11, - 2.14], I = 0%). (PROSPERO: CRD42020221733).


Assuntos
Manejo da Dor , Dor , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Religião
17.
Mov Disord ; 37(2): 253-263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939221

RESUMO

Gait and balance abnormalities develop commonly in Parkinson's disease and are among the motor symptoms most disabling and refractory to dopaminergic or other treatments, including deep brain stimulation. Efforts to develop effective therapies are challenged by limited understanding of these complex disorders. There is a major need for novel and appropriately targeted research to expedite progress in this area. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society has charged a panel of experts in the field to consider the current knowledge gaps and determine the research routes with highest potential to generate groundbreaking data. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Dopamina , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Pesquisa
18.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293226

RESUMO

The study of human papillomavirus (HPV)-induced carcinogenesis uses multiple in vivo mouse models, one of which relies on the cytokeratin 14 gene promoter to drive the expression of all HPV early oncogenes. This study aimed to determine the HPV16 variant and sublineage present in the K14HPV16 mouse model. This information can be considered of great importance to further enhance this K14HPV16 model as an essential research tool and optimize its use for basic and translational studies. Our study evaluated HPV DNA from 17 samples isolated from 4 animals, both wild-type (n = 2) and HPV16-transgenic mice (n = 2). Total DNA was extracted from tissues and the detection of HPV16 was performed using a qPCR multiplex. HPV16-positive samples were subsequently whole-genome sequenced by next-generation sequencing techniques. The phylogenetic positioning clearly shows K14HPV16 samples clustering together in the sub-lineage A1 (NC001526.4). A comparative genome analysis of K14HPV16 samples revealed three mutations to the human papillomaviruses type 16 sublineage A1 representative strain. Knowledge of the HPV 16 variant is fundamental, and these findings will allow the rational use of this animal model to explore the role of the A1 sublineage in HPV-driven cancer.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Queratina-14/genética , Filogenia , Neoplasias do Colo do Útero/genética , Papillomavirus Humano 16 , Papillomaviridae/genética , Carcinogênese/genética , Oncogenes
19.
BMC Neurol ; 21(1): 331, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454453

RESUMO

BACKGROUND: Gait impairments are among the most common and impactful symptoms of Parkinson's disease (PD). Recent technological advances aim to quantify these impairments using low-cost wearable systems for use in either supervised clinical consultations or long-term unsupervised monitoring of gait in ecological environments. However, very few of these wearable systems have been validated comparatively to a criterion of established validity. OBJECTIVE: We developed two movement analysis solutions (3D full-body kinematics based on inertial sensors, and a smartphone application) in which validity was assessed versus the optoelectronic criterion in a population of PD patients. METHODS: Nineteen subjects with PD (7 female) participated in the study (age: 62 ± 12.27 years; disease duration: 6.39 ± 3.70 years; HY: 2 ± 0.23). Each participant underwent a gait analysis whilst barefoot, at a self-selected speed, for a distance of 3 times 10 m in a straight line, assessed simultaneously with all three systems. RESULTS: Our results show excellent agreement between either solution and the optoelectronic criterion. Both systems differentiate between PD patients and healthy controls, and between PD patients in ON or OFF medication states (normal difference distributions pooled from published research in PD patients in ON and OFF states that included an age-matched healthy control group). Fair to high waveform similarity and mean absolute errors below the mean relative orientation accuracy of the equipment were found when comparing the angular kinematics between the full-body inertial sensor-based system and the optoelectronic criterion. CONCLUSIONS: We conclude that the presented solutions produce accurate results and can capture clinically relevant parameters using commodity wearable sensors or a simple smartphone. This validation will hopefully enable the adoption of these systems for supervised and unsupervised gait analysis in clinical practice and clinical trials.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Fenômenos Biomecânicos , Feminino , Marcha , Análise da Marcha , Humanos , Doença de Parkinson/diagnóstico
20.
J Pathol ; 251(1): 4-11, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994197

RESUMO

Head and neck squamous cell carcinomas (HNSCCs) associated with human papillomavirus (HPV) occur specifically in the tonsils and the tongue base, but the reasons for this specificity remain unknown. We studied the distribution of oral and pharyngeal lesions in HPV16-transgenic mice where the expression of all the HPV16 early genes is targeted to keratinising squamous epithelia by the cytokeratin 14 (Krt14) gene promoter. At 30 weeks of age, 100% of mice developed low- and high-grade intraepithelial dysplasia at multiple sites. Twenty per cent of animals developed invasive cancers that remarkably were restricted to the tongue base, in association with the circumvallate papilla. The lesions maintained expression of CK14 (KRT14) and the HPV16 E6 and E7 oncogenes, and displayed deregulated cell proliferation and up-regulation of p16INK4A . Malignant lesions were poorly differentiated and destroyed the tongue musculature. We hypothesised that the tongue base area might contain a transformation zone similar to those observed in the cervix and anus, explaining why HPV-positive cancers target that area specifically. Immunohistochemistry for two transformation zone markers, CK7 (KRT7) and p63 (TP63), revealed a squamocolumnar junction in the terminal duct of von Ebner's gland, composed of CK7+ luminal cells and p63+ basal cells. Dysplastic and invasive lesions retained diffuse p63 expression but only scattered positivity for CK7. Site-specific HPV-induced carcinogenesis in the tongue base may be explained by the presence of a transformation zone in the circumvallate papilla. This mouse model reproduces key morphological and molecular features of HPV-positive HNSCC, providing a unique in vivo tool for basic and translational research. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma de Células Escamosas/virologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/genética , Papillomaviridae/genética , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA Viral/genética , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Camundongos Transgênicos , Infecções por Papillomavirus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA