Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Brain ; 147(4): 1377-1388, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787503

RESUMO

Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.


Assuntos
Melaninas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tremor/complicações , Radioisótopos de Carbono/metabolismo , Tomografia por Emissão de Pósitrons , Norepinefrina/metabolismo , Locus Cerúleo/metabolismo , Imageamento por Ressonância Magnética
2.
Eur J Nucl Med Mol Imaging ; 50(6): 1651-1664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36656363

RESUMO

PURPOSE: F13640 (a.k.a. befiradol, NLX-112) is a highly selective 5-HT1A receptor ligand that was selected as a PET radiopharmaceutical-candidate based on animal studies. Due to its high efficacy agonist properties, [18F]F13640 binds preferentially to functional 5-HT1A receptors, which are coupled to intracellular G-proteins. Here, we characterize brain labeling of 5-HT1A receptors by [18F]F13640 in humans and describe a simplified model for its quantification. METHODS: PET/CT and PET-MRI scans were conducted in a total of 13 healthy male volunteers (29 ± 9 years old), with arterial input functions (AIF) (n = 9) and test-retest protocol (n = 8). Several kinetic models were compared (one tissue compartment model, two-tissue compartment model, and Logan); two models with reference region were also evaluated: simplified reference tissue model (SRTM) and the logan reference model (LREF). RESULTS: [18F]F13640 showed high uptake values in raphe nuclei and cortical regions. SRTM and LREF models showed a very high correlation with kinetic models using AIF. As concerns test-retest parameters and the prolonged binding kinetics of [18F]F13640, better reproducibility, and reliability were found with the LREF method. Cerebellum white matter and frontal lobe white matter stand out as suitable reference regions. CONCLUSION: The favorable brain labeling and kinetic profile of [18F]F13640, its high receptor specificity and its high efficacy agonist properties open new perspectives for studying functionally active 5-HT1A receptors, unlike previous radiopharmaceuticals that act as antagonists. [18F]F13640's kinetic properties allow injection outside of the PET scanner with delayed acquisitions, facilitating the design of innovative longitudinal protocols in neurology and psychiatry. TRIAL REGISTRATION: Trial Registration EudraCT 2017-002,722-21.


Assuntos
Compostos Radiofarmacêuticos , Serotonina , Animais , Humanos , Masculino , Adulto Jovem , Adulto , Compostos Radiofarmacêuticos/metabolismo , Reprodutibilidade dos Testes , Serotonina/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos
3.
Cereb Cortex ; 32(13): 2717-2728, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34668524

RESUMO

Memory consolidation involves reorganization at both the synaptic and system levels. The latter involves gradual reorganization of the brain regions that support memory and has been mostly highlighted using hippocampal-dependent tasks. The standard memory consolidation model posits that the hippocampus becomes gradually less important over time in favor of neocortical regions. In contrast, this reorganization of circuits in amygdala-dependent tasks has been less investigated. Moreover, this question has been addressed using primarily lesion or cellular imaging approaches thus precluding the comparison of recent and remote memory networks in the same animals. To overcome this limitation, we used microPET imaging to characterize, in the same animals, the networks activated during the recall of a recent versus remote memory in an olfactory cued fear conditioning paradigm. The data highlighted the drastic difference between the extents of the two networks. Indeed, although the recall of a recent odor fear memory activates a large network of structures spanning from the prefrontal cortex to the cerebellum, significant activations during remote memory retrieval are limited to the piriform cortex. These results strongly support the view that amygdala-dependent memories also undergo system-level reorganization, and that sensory cortical areas might participate in the long-term storage of emotional memories.


Assuntos
Medo , Consolidação da Memória , Animais , Sinais (Psicologia) , Medo/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Tomografia por Emissão de Pósitrons , Ratos
4.
Eur J Nucl Med Mol Imaging ; 49(7): 2122-2136, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35129652

RESUMO

PURPOSE: Imaging of acute lung inflammation is pivotal to evaluate innovative ventilation strategies. We aimed to develop and validate a three-tissue compartment kinetic model (3TCM) of [11C](R)-PK11195 lung uptake in experimental acute respiratory distress syndrome (ARDS) to help quantify macrophagic inflammation, while accounting for the impact of its non-specific and irreversible uptake in lung tissues. MATERIAL AND METHODS: We analyzed the data of 38 positron emission tomography (PET) studies performed in 21 swine with or without experimental ARDS, receiving general anesthesia and mechanical ventilation. Model input function was a plasma, metabolite-corrected, image-derived input function measured in the main pulmonary artery. Regional lung analysis consisted in applying both the 3TCM and the two-tissue compartment model (2TCM); in each region, the best model was selected using a selection algorithm with a goodness-of-fit criterion. Regional best model binding potentials (BPND) were compared to lung macrophage presence, semi-quantified in pathology. RESULTS: The 3TCM was preferred in 142 lung regions (62%, 95% confidence interval: 56 to 69%). BPND determined by the 2TCM was significantly higher than the value computed with the 3TCM (overall median with interquartile range: 0.81 [0.44-1.33] vs. 0.60 [0.34-0.94], p < 0.02). Regional macrophage score was significantly associated with the best model BPND (p = 0.03). Regional BPND was significantly increased in the hyperinflated lung compartment, compared to the normally aerated one (median with interquartile range: 0.8 [0.6-1.7] vs. 0.6 [0.3-0.8], p = 0.03). CONCLUSION: To assess the intensity and spatial distribution of acute macrophagic lung inflammation in the context of experimental ARDS with mechanical ventilation, PET quantification of [11C](R)-PK11195 lung uptake was significantly improved in most lung regions using the 3TCM. This new methodology offers the opportunity to non-invasively evaluate innovative ventilatory strategies aiming at controlling acute lung inflammation.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Animais , Humanos , Isoquinolinas , Macrófagos , Pneumonia/complicações , Pneumonia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X/métodos
5.
J Nucl Cardiol ; 29(3): 1064-1074, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33145738

RESUMO

BACKGROUND: Previous studies have suggested the role of microcalcifications in plaque vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological criteria of vulnerability. METHODS AND RESULTS: We included 12 patients with either recently symptomatic or asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-background ratio (TBR) was measured in culprit and nonculprit (including contralateral plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also collected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vulnerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase (TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial walls did not differ between symptomatic and asymptomatic patients. CONCLUSIONS: 18F-NaF PET/MRI may be a promising tool for providing additional insights into the plaque vulnerability.


Assuntos
Calcinose , Estenose das Carótidas , Placa Aterosclerótica , Calcinose/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Fluoreto de Sódio
6.
Neuroimage ; 240: 118328, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224852

RESUMO

Previous work introduced the [11C]yohimbine as a suitable ligand of central α2-adrenoreceptors (α2-ARs) for PET imaging. However, reproducibility of [11C]yohimbine PET measurements in healthy humans estimated with a simplified modeling method with reference region, as well as sensitivity of [11C]yohimbine to noradrenergic competition were not evaluated. The objectives of the present study were therefore to fill this gap. METHODS: Thirteen healthy humans underwent two [11C]yohimbine 90-minute dynamic scans performed on a PET-MRI scanner. Seven had arterial blood sampling with metabolite assessment and plasmatic yohimbine free fraction evaluation at the first scan to have arterial input function and test appropriate kinetic modeling. The second scan was a simple retest for 6 subjects to evaluate the test-retest reproducibility. For the remaining 7 subjects the second scan was a challenge study with the administration of a single oral dose of 150 µg of clonidine 90 min before the PET scan. Parametric images of α2-ARs distribution volume ratios (DVR) were generated with two non-invasive models: Logan graphical analysis with Reference (LREF) and Simplified Reference Tissue Method (SRTM). Three reference regions (cerebellum white matter (CERWM), frontal white matter (FLWM), and corpus callosum (CC)) were tested. RESULTS: We showed high test-retest reproducibility of DVR estimation with LREF and SRTM regardless of reference region (CC, CERWM, FLWM). The best fit was obtained with SRTMCC (r2=0.94). Test-retest showed that the SRTMCC is highly reproducible (mean ICC>0.7), with a slight bias (-1.8%), whereas SRTMCERWM had lower bias (-0.1%), and excellent ICC (mean>0.8). Using SRTMCC, regional changes have been observed after clonidine administration with a significant increase reported in the amygdala and striatum as well as in several posterior cortical areas as revealed with the voxel-based analysis. CONCLUSION: The results add experimental support for the suitability of [11C]yohimbine PET in the quantitative assessment of α2-ARs occupancy in vivo in the human brain. Trial registration EudraCT 2018-000380-82.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/normas , Ioimbina/metabolismo , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Tomografia por Emissão de Pósitrons/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Adulto Jovem
7.
Cereb Cortex ; 28(12): 4169-4178, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045584

RESUMO

Oxytocin (OT), a neuropeptide involved in affiliation has been shown to enhance social skills in patients with autism spectrum disorders (ASD). Nevertheless, OT improvements seem ephemeral. Animal research has demonstrated OT action on serotonin (5-HT), an interaction that we also found in the healthy human brain. Whether such synaptic interplay also occurs in ASD patients is unknown. To address this issue, we mapped the effects of intranasal OT on 5-HT in 18 patients with ASD and 24 healthy controls (HC) in a double blind, placebo controlled, within subject PET-scan experiment. Each participant underwent two scans: baseline and spray (OT or placebo). Using the radiotracer [18 F]MPPF, marking the 5-HT 1A receptor (5-HT1AR), we measured MPPF-Binding Potential (BP) as an index of OT-induced serotonin functional modulation. At baseline ASD patients did not differ from controls for 5-HT1AR concentration and distribution. However, while OT significantly increased MPPF BP in several brain regions of HC, no changes were observed in the ASD group. Serotonin serum concentration analysis corroborated these results. Our findings suggest a disturbed OT-serotonin interaction in autism. This may limit the potential benefits of OT in these patients and open the ways to investigate combined OT-serotonin treatments.


Assuntos
Transtorno do Espectro Autista/metabolismo , Encéfalo/efeitos dos fármacos , Ocitocina/administração & dosagem , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina/sangue , Transmissão Sináptica/efeitos dos fármacos , Administração Intranasal , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/metabolismo , Método Duplo-Cego , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Adulto Jovem
8.
Cereb Cortex ; 28(7): 2636-2646, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688276

RESUMO

A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward-motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS.


Assuntos
Dopamina/metabolismo , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Estriado Ventral/metabolismo , Adulto , Análise de Variância , Antagonistas de Dopamina/farmacocinética , Método Duplo-Cego , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/efeitos dos fármacos , Racloprida/farmacocinética , Fatores de Tempo , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiologia , Adulto Jovem
9.
J Neurosci ; 36(5): 1577-89, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843639

RESUMO

It is now widely accepted that compensatory mechanisms are involved during the early phase of Parkinson's disease (PD) to delay the expression of motor symptoms. However, the neurochemical mechanisms underlying this presymptomatic period are still unclear. Here, we measured in vivo longitudinal changes of both the dopaminergic and serotonergic systems in seven asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated monkeys (when motor symptoms are less apparent) using PET. We used the progressively MPTP-intoxicated monkey model that expresses recovery from motor symptoms to study the changes in dopamine synthesis ([(18)F]DOPA), dopamine D2/D3 receptors ([(11)C]raclopride), and serotonin transporter (11)C-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio) benzylamine ([(11)C]DASB) and serotonin 1A receptor ([(18)F]MPPF) levels between four different states (baseline, early symptomatic, full symptomatic and recovered). During the early symptomatic state, we observed increases of [(18)F]DOPA uptake in the anterior putamen, [(11)C]raclopride binding in the posterior striatum, and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine [(18)F]MPPF uptake in the orbitofrontal cortex and dorsal ACC. After recovery from motor symptoms, the results mainly showed decreased [(11)C]raclopride binding in the anterior striatum and limbic ACC. In addition, our findings supported the importance of pallidal dopaminergic neurotransmission in both the early compensatory mechanisms and the functional recovery mechanisms, with reduced aromatic L-amino acid decarboxylase (AAAD) activity closely related to the appearance or perseveration of motor symptoms. In parallel, this study provides preliminary evidence of the role of the serotonergic system in compensatory mechanisms. Nonetheless, future studies are needed to determine whether there are changes in SERT availability in the early symptomatic state and if [(18)F]MPPF PET imaging might be a promising biomarker of early degenerative changes in PD. SIGNIFICANCE STATEMENT: The present research provides evidence of the potential of combining a multitracer PET imaging technique and a longitudinal protocol applied on a progressively 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated monkey model to further elucidate the nature of the compensatory mechanisms involved in the preclinical period of Parkinson's disease (PD). In particular, by investigating the dopaminergic and serotonergic changes both presynaptically and postsynaptically at four different motor states (baseline, early symptomatic, full symptomatic, and recovered), this study has allowed us to identify putative biomarkers for future therapeutic interventions to prevent and/or delay disease expression. For example, our findings suggest that the external pallidum could be a new target for cell-based therapies to reduce PD symptoms.


Assuntos
Neurônios Dopaminérgicos/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/tendências , Neurônios Serotoninérgicos/diagnóstico por imagem , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estudos Longitudinais , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia
10.
Neuroimage ; 147: 346-359, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27988322

RESUMO

AIM: To accurately quantify the radioactivity concentration measured by PET, emission data need to be corrected for photon attenuation; however, the MRI signal cannot easily be converted into attenuation values, making attenuation correction (AC) in PET/MRI challenging. In order to further improve the current vendor-implemented MR-AC methods for absolute quantification, a number of prototype methods have been proposed in the literature. These can be categorized into three types: template/atlas-based, segmentation-based, and reconstruction-based. These proposed methods in general demonstrated improvements compared to vendor-implemented AC, and many studies report deviations in PET uptake after AC of only a few percent from a gold standard CT-AC. Using a unified quantitative evaluation with identical metrics, subject cohort, and common CT-based reference, the aims of this study were to evaluate a selection of novel methods proposed in the literature, and identify the ones suitable for clinical use. METHODS: In total, 11 AC methods were evaluated: two vendor-implemented (MR-ACDIXON and MR-ACUTE), five based on template/atlas information (MR-ACSEGBONE (Koesters et al., 2016), MR-ACONTARIO (Anazodo et al., 2014), MR-ACBOSTON (Izquierdo-Garcia et al., 2014), MR-ACUCL (Burgos et al., 2014), and MR-ACMAXPROB (Merida et al., 2015)), one based on simultaneous reconstruction of attenuation and emission (MR-ACMLAA (Benoit et al., 2015)), and three based on image-segmentation (MR-ACMUNICH (Cabello et al., 2015), MR-ACCAR-RiDR (Juttukonda et al., 2015), and MR-ACRESOLUTE (Ladefoged et al., 2015)). We selected 359 subjects who were scanned using one of the following radiotracers: [18F]FDG (210), [11C]PiB (51), and [18F]florbetapir (98). The comparison to AC with a gold standard CT was performed both globally and regionally, with a special focus on robustness and outlier analysis. RESULTS: The average performance in PET tracer uptake was within ±5% of CT for all of the proposed methods, with the average±SD global percentage bias in PET FDG uptake for each method being: MR-ACDIXON (-11.3±3.5)%, MR-ACUTE (-5.7±2.0)%, MR-ACONTARIO (-4.3±3.6)%, MR-ACMUNICH (3.7±2.1)%, MR-ACMLAA (-1.9±2.6)%, MR-ACSEGBONE (-1.7±3.6)%, MR-ACUCL (0.8±1.2)%, MR-ACCAR-RiDR (-0.4±1.9)%, MR-ACMAXPROB (-0.4±1.6)%, MR-ACBOSTON (-0.3±1.8)%, and MR-ACRESOLUTE (0.3±1.7)%, ordered by average bias. The overall best performing methods (MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically) showed regional average errors within ±3% of PET with CT-AC in all regions of the brain with FDG, and the same four methods, as well as MR-ACCAR-RiDR, showed that for 95% of the patients, 95% of brain voxels had an uptake that deviated by less than 15% from the reference. Comparable performance was obtained with PiB and florbetapir. CONCLUSIONS: All of the proposed novel methods have an average global performance within likely acceptable limits (±5% of CT-based reference), and the main difference among the methods was found in the robustness, outlier analysis, and clinical feasibility. Overall, the best performing methods were MR-ACBOSTON, MR-ACMAXPROB, MR-ACRESOLUTE and MR-ACUCL, ordered alphabetically. These methods all minimized the number of outliers, standard deviation, and average global and local error. The methods MR-ACMUNICH and MR-ACCAR-RiDR were both within acceptable quantitative limits, so these methods should be considered if processing time is a factor. The method MR-ACSEGBONE also demonstrates promising results, and performs well within the likely acceptable quantitative limits. For clinical routine scans where processing time can be a key factor, this vendor-provided solution currently outperforms most methods. With the performance of the methods presented here, it may be concluded that the challenge of improving the accuracy of MR-AC in adult brains with normal anatomy has been solved to a quantitatively acceptable degree, which is smaller than the quantification reproducibility in PET imaging.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Demência/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos , Adulto Jovem
11.
Cereb Cortex ; 26(6): 2427-2439, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25858969

RESUMO

The sheer presence of another member of the same species affects performance, sometimes impeding it, sometimes enhancing it. For well-learned tasks, the effect is generally positive. This fundamental form of social influence, known as social facilitation, concerns human as well as nonhuman animals and affects many behaviors from food consumption to cognition. In psychology, this phenomenon has been known for over a century. Yet, its underlying mechanism (motivation or attention) remains debated, its relationship to stress unclear, and its neural substrates unknown. To address these issues, we investigated the behavioral, neuronal, and endocrinological markers of social facilitation in monkeys trained to touch images to obtain rewards. When another animal was present, performance was enhanced, but testing-induced stress (i.e., plasma cortisol elevation) was unchanged, as was metabolic activity in the brain motivation network. Rather, task-related activity in the (right) attention frontoparietal network encompassing the lateral prefrontal cortex, ventral premotor cortex, frontal eye field, and intraparietal sulcus was increased when another individual was present compared with when animals were tested alone. These results establish the very first link between the behavioral enhancement produced by the mere presence of a peer and an increase of metabolic activity in those brain structures underpinning attention.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Motivação/fisiologia , Comportamento Social , Animais , Braço/fisiologia , Mapeamento Encefálico , Feminino , Fluordesoxiglucose F18 , Lateralidade Funcional , Hidrocortisona/sangue , Macaca mulatta , Atividade Motora/fisiologia , Vias Neurais/fisiologia , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Estresse Psicológico/fisiopatologia
12.
Proc Natl Acad Sci U S A ; 111(23): 8637-42, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912179

RESUMO

Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine ([(18)F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [(18)F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [(18)F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders.


Assuntos
Encéfalo/metabolismo , Ocitocina/farmacologia , Serotonina/metabolismo , Administração Intranasal , Adulto , Tonsila do Cerebelo/metabolismo , Ligação Competitiva/efeitos dos fármacos , Método Duplo-Cego , Lobo Frontal/metabolismo , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ocitocina/administração & dosagem , Piperazinas/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas/metabolismo , Núcleos da Rafe/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
13.
Brain ; 138(Pt 9): 2632-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26117365

RESUMO

Serotonergic (5-HT) neurons degenerate in Parkinson's disease. To determine the role of this 5-HT injury-besides the dopaminergic one in the parkinsonian symptomatology-we developed a new monkey model exhibiting a double dopaminergic/serotonergic lesion by sequentially using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 3,4-methylenedioxy-N-methamphetamine (MDMA, better known as ecstasy). By positron emission tomography imaging and immunohistochemistry, we demonstrated that MDMA injured 5-HT nerve terminals in the brain of MPTP monkeys. Unexpectedly, this injury had no impact on tremor or on bradykinesia, but altered rigidity. It abolished the l-DOPA-induced dyskinesia and neuropsychiatric-like behaviours, without altering the anti-parkinsonian response. These data demonstrate that 5-HT fibres play a critical role in the expression of both motor and non-motor symptoms in Parkinson's disease, and highlight that an imbalance between the 5-HT and dopaminergic innervating systems is involved in specific basal ganglia territories for different symptoms.


Assuntos
Dopamina/metabolismo , Intoxicação por MPTP/fisiopatologia , Transtornos Mentais/etiologia , Serotonina/metabolismo , Compostos de Anilina , Animais , Antiparkinsonianos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Chlorocebus aethiops , Modelos Animais de Doenças , Dopaminérgicos/toxicidade , Feminino , Levodopa/uso terapêutico , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/tratamento farmacológico , Macaca fascicularis , Masculino , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Nortropanos , Cintilografia , Serotoninérgicos/toxicidade , Sulfetos
15.
Neuroimage ; 102 Pt 2: 249-61, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25108180

RESUMO

The delayed appearance of motor symptoms in PD poses a crucial challenge for early detection of the disease. We measured the binding potential of the selective dopamine active transporter (DAT) radiotracer [(11)C]PE2I in MPTP-treated macaque monkeys, thus establishing a detailed profile of the nigrostriatal DA status following MPTP intoxication and its relation to induced motor and non-motor symptoms. Clinical score and cognitive performance were followed throughout the study. We measured longitudinally in vivo the non-displaceable binding potential to DAT in premotor, motor-recovered (i.e. both non-symptomatic) and symptomatic MPTP-treated monkeys. Results show an unexpected and pronounced dissociation between clinical scores and [(11)C]PE2I-BP(ND) during the premotor phase i.e. DAT binding in the striatum of premotor animals was increased around 20%. Importantly, this broad increase of DAT binding in the caudate, ventral striatum and anterior putamen was accompanied by i) deteriorated cognitive performance, showing a likely causal role of the observed hyperdopaminergic state (Cools, 2011; Cools and D'Esposito, 2011) and ii) an asymmetric decrease of DAT binding at a focal point of the posterior putamen, suggesting that increased DAT is one of the earliest, intrinsic compensatory mechanisms. Following spontaneous recovery from motor deficits, DAT binding was greatly reduced as recently shown in-vivo with other radiotracers (Blesa et al., 2010, 2012). Finally, high clinical scores were correlated to considerably low levels of DAT only after the induction of a stable parkinsonian state. We additionally show that the only striatal region which was significantly correlated to the degree of motor impairments is the ventral striatum. Further research on this period should allow better understanding of DA compensation at premature stages of PD and potentially identify new diagnosis and therapeutic index.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Intoxicação por MPTP/metabolismo , Animais , Radioisótopos de Carbono/farmacocinética , Cognição/efeitos dos fármacos , Cognição/fisiologia , Corpo Estriado/diagnóstico por imagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Estudos Longitudinais , Intoxicação por MPTP/diagnóstico por imagem , Macaca fascicularis , Nortropanos/farmacocinética , Tomografia por Emissão de Pósitrons
16.
Brain Struct Funct ; 229(1): 195-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062204

RESUMO

Patients with Anorexia Nervosa (AN) and athletes share intense physical activity and pituitary hormonal disturbances related to absolute (AN) or relative (athletes) undernutrition. Pituitary gland (PG) structure evaluations in those conditions are scarce, and did not differentiate anterior from posterior lobe. We evaluated the structure-function relationship of anterior and posterior PG in AN and athletes, and potential reversibility of this alteration in a group of weight-recovered patients (AN_Rec). Manual delineation of anterior (AP) and posterior (PP) PG was performed on T1-weighted MR images in 17 women with AN, 15 women with AN_Rec, 18 athletes women and 25 female controls. Anthropometric, hormonal, and psychometric parameters were explored and correlated with PG volumes. AP volume (APV) was lower in AN (448 ± 82 mm3), AN_Rec (505 ± 59 mm3), and athletes (540 ± 101 mm3) vs. Controls (615 ± 61 mm3, p < 0.00001, p < 0.00001 and p = 0.02, respectively); and smaller in AN vs. AN_Rec (p = 0.007). PP volume did not show any differences between the groups. APV was positively correlated with weight (R = 0.36, p = 0.011) in AN, and luteinizing hormone (R = 0.35, p = 0.014) in total group. In AN, mean growth hormone (GH) was negatively correlated with global pituitary volume (R = 0.31, p = 0.031) and APV (R = 0.29, p = 0.037). Absolute and relative undernutrition led to a decreased anterior pituitary gland volume, which was reversible with weight gain, correlated with low bodyweight, and blockade of gonadal hypothalamic-pituitary axis. Intriguing inverse correlation between anterior pituitary gland volume and GH plasma level could suggests a low storage capacity of anterior pituitary gland and increased reactivity to low insulin-like growth factor type 1.


Assuntos
Anorexia Nervosa , Desnutrição , Adeno-Hipófise , Feminino , Humanos , Anorexia Nervosa/metabolismo , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Relação Estrutura-Atividade , Fator de Crescimento Insulin-Like I/metabolismo
17.
Brain Struct Funct ; 229(4): 1001-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502330

RESUMO

The probabilistic topography and inter-individual variability of the pituitary gland (PG) remain undetermined. The absence of a standardized reference atlas hinders research on PG volumetrics. In this study, we aimed at creating maximum probability maps for the anterior and posterior PG in young female adults. We manually delineated the anterior and posterior parts of the pituitary glands in 26 healthy subjects using high-resolution MRI T1 images. A three-step procedure and a cost function-masking approach were employed to optimize spatial normalization for the PG. We generated probabilistic atlases and maximum probability maps, which were subsequently coregistered back to the subjects' space and compared to manual delineations. Manual measurements led to a total pituitary volume of 705 ± 88 mm³, with the anterior and posterior volumes measuring 614 ± 82 mm³ and 91 ± 20 mm³, respectively. The mean relative volume difference between manual and atlas-based estimations was 1.3%. The global pituitary atlas exhibited an 80% (± 9%) overlap for the DICE index and 67% (± 11%) for the Jaccard index. Similarly, these values were 77% (± 13%) and 64% (± 14%) for the anterior pituitary atlas and 62% (± 21%) and 47% (± 17%) for the posterior PG atlas, respectively. We observed a substantial concordance and a significant correlation between the volume estimations of the manual and atlas-based methods for the global pituitary and anterior volumes. The maximum probability maps of the anterior and posterior PG lay the groundwork for automatic atlas-based segmentation methods and the standardized analysis of large PG datasets.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Humanos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Hipófise/diagnóstico por imagem
18.
Lab Anim (NY) ; 53(1): 13-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996697

RESUMO

Non-human primate studies are unique in translational research, especially in neurosciences where neuroimaging approaches are the preferred methods used for cross-species comparative neurosciences. In this regard, neuroimaging database development and sharing are encouraged to increase the number of subjects available to the community, while limiting the number of animals used in research. Here we present a simultaneous positron emission tomography (PET)/magnetic resonance (MR) dataset of 20 Macaca fascicularis images structured according to the Brain Imaging Data Structure standards. This database contains multiple MR imaging sequences (anatomical, diffusion and perfusion imaging notably), as well as PET perfusion and inflammation imaging using respectively [15O]H2O and [11C]PK11195 radiotracers. We describe the pipeline method to assemble baseline data from various cohorts and qualitatively assess all the data using signal-to-noise and contrast-to-noise ratios as well as the median of intensity and the pseudo-noise-equivalent-count rate (dynamic and at maximum) for PET data. Our study provides a detailed example for quality control integration in preclinical and translational PET/MR studies with the aim of increasing reproducibility. The PREMISE database is stored and available through the PRIME-DE consortium repository.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Animais , Humanos , Macaca fascicularis , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Primatas , Encéfalo/diagnóstico por imagem
19.
Clin Nucl Med ; 49(5): 381-386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498623

RESUMO

PURPOSE: MRI is the main imaging modality for pediatric brain tumors, but amino acid PET can provide additional information. Simultaneous PET-MRI acquisition allows to fully assess the tumor and lower the radiation exposure. Although symptomatic posterior fossa tumors are typically resected, the patient management is evolving and will benefit from an improved preoperative tumor characterization. We aimed to explore, in children with newly diagnosed posterior fossa tumor, the complementarity of the information provided by amino acid PET and MRI parameters and the correlation to histopathological results. PATIENTS AND METHODS: Children with a newly diagnosed posterior fossa tumor prospectively underwent a preoperative 11 C-methionine (MET) PET-MRI. Images were assessed visually and semiquantitatively. Using correlation, minimum apparent diffusion coefficient (ADC min ) and contrast enhancement were compared with MET SUV max . The diameter of the enhancing lesions was compared with metabolic tumoral volume. Lesions were classified according to the 2021 World Health Organization (WHO) classification. RESULTS: Ten children were included 4 pilocytic astrocytomas, 2 medulloblastomas, 1 ganglioglioma, 1 central nervous system embryonal tumor, and 1 schwannoma. All lesions showed visually increased MET uptake. A negative moderate correlation was found between ADC min and SUV max values ( r = -0.39). Mean SUV max was 3.8 (range, 3.3-4.2) in WHO grade 4 versus 2.5 (range, 1.7-3.0) in WHO grade 1 lesions. A positive moderate correlation was found between metabolic tumoral volume and diameter values ( r = 0.34). There was no correlation between SUV max and contrast enhancement intensity ( r = -0.15). CONCLUSIONS: Preoperative 11 C-MET PET and MRI could provide complementary information to characterize pediatric infratentorial tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Neoplasias Infratentoriais , Meduloblastoma , Criança , Humanos , Metionina , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Racemetionina , Neoplasias Encefálicas/diagnóstico por imagem , Aminoácidos
20.
Neuroimage ; 77: 26-43, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23537938

RESUMO

UNLABELLED: MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures. METHODS: Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data. RESULTS: Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of atlases used. When all four atlases were used for the MAXPROB creation, the accuracy of morphometric segmentation approached that of the PROPAG method. PET measures extracted either via automatic methods or via the manually defined regions were strongly correlated, with no significant regional differences between methods. Intra-class correlation coefficients for test-retest data were over 0.87. CONCLUSIONS: Compared to single atlas extractions, multi-atlas methods improve the accuracy of region definition. They also perform comparably to manually defined regions for PET quantification. Multiple atlases of Macaca fascicularis brains are now available and allow reproducible and simplified analyses.


Assuntos
Anatomia Artística , Atlas como Assunto , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Animais , Encéfalo/fisiologia , Feminino , Cinética , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA