Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(6): 3524-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021313

RESUMO

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis, a disease potentially fatal if not treated. Current available treatments have major limitations, and new and safer drugs are urgently needed. In recent years, advances in high-throughput screening technologies have enabled the screening of millions of compounds to identify new antileishmanial agents. However, most of the compounds identified in vitro did not translate their activities when tested in in vivo models, highlighting the need to develop more predictive in vitro assays. In the present work, we describe the development of a robust replicative, high-content, in vitro intracellular L. donovani assay. Horse serum was included in the assay media to replace standard fetal bovine serum, to completely eliminate the extracellular parasites derived from the infection process. A novel phenotypic in vitro infection model has been developed, complemented with the identification of the proliferation of intracellular amastigotes measured by EdU incorporation. In vitro and in vivo results for miltefosine, amphotericin B, and the selected compound 1 have been included to validate the assay.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania donovani/crescimento & desenvolvimento , Leishmaniose Visceral/tratamento farmacológico , Fosforilcolina/análogos & derivados , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Leishmania donovani/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Fosforilcolina/farmacologia
2.
PLoS Negl Trop Dis ; 11(5): e0005629, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542202

RESUMO

In recent years, the neglected diseases drug discovery community has elected phenotypic screening as the key approach for the identification of novel hit compounds. However, when this approach is applied, important questions related to the mode of action for these compounds remain unanswered. One of such questions is related to the rate of action, a useful piece of information when facing the challenge of prioritising the most promising hit compounds. In the present work, compounds of the "Leishmania donovani box" were evaluated using a rate of action assay adapted from a replicative intracellular high content assay recently developed. The potency of each compound was determined every 24 hours up to 96 hours, and standard drugs amphotericin B and miltefosine were used as references to group these compounds according to their rate of action. Independently of this biological assessment, compounds were also clustered according to their minimal chemical scaffold. Comparison of the results showed a complete correlation between the chemical scaffold and the biological group for the vast majority of compounds, demonstrating how the assay was able to bring information on the rate of action for each chemical series, a property directly linked to the mode of action. Overall, the assay here described permitted us to evaluate the rate of action of the "Leishmania donovani box" using two of the currently available drugs as references and, also, to propose a number of fast-acting chemical scaffolds present in the box as starting points for future drug discovery projects to the wider scientific community. The results here presented validate the use of this assay for the determination of the rate of action early in the discovery process, to assist in the prioritisation of hit compounds.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania donovani/efeitos dos fármacos , Macrófagos/parasitologia , Fosforilcolina/análogos & derivados , Linhagem Celular Tumoral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Fosforilcolina/farmacologia
3.
J Med Chem ; 60(16): 6880-6896, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28806082

RESUMO

Since the appearance of resistance to the current front-line antimalarial treatments, ACTs (artemisinin combination therapies), the discovery of novel chemical entities to treat the disease is recognized as a major global health priority. From the GSK antimalarial set, we identified an aminoxadiazole with an antiparasitic profile comparable with artemisinin (1), with no cross-resistance in a resistant strains panel and a potential new mode of action. A medicinal chemistry program allowed delivery of compounds such as 19 with high solubility in aqueous media, an acceptable toxicological profile, and oral efficacy. Further evaluation of the lead compounds showed that in vivo genotoxic degradants might be generated. The compounds generated during this medicinal chemistry program and others from the GSK collection were used to build a pharmacophore model which could be used in the virtual screening of compound collections and potentially identify new chemotypes that could deliver the same antiparasitic profile.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antimaláricos/farmacologia , Oxidiazóis/farmacologia , 2,2'-Dipiridil/administração & dosagem , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/toxicidade , Animais , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/toxicidade , Atovaquona/farmacologia , Cloroquina/farmacologia , Desenho de Fármacos , Feminino , Humanos , Hidrazinas/metabolismo , Camundongos , Testes de Mutagenicidade , Mutagênicos/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/síntese química , Oxidiazóis/toxicidade , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/farmacologia , Relação Estrutura-Atividade
4.
J Med Chem ; 59(11): 5416-31, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27127993

RESUMO

Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the p-SF5-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the P. falciparum SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than 1, they most likely would need to be part of a multidose regimen.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Malária Falciparum/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Triazóis/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
5.
ACS Med Chem Lett ; 5(6): 657-61, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944739

RESUMO

Antiparasitic oral drugs have been associated to lipophilic molecules due to their intrinsic permeability. However, these kind of molecules are associated to numerous adverse effects, which have been extensively studied. Within the Tres Cantos Antimalarial Set (TCAMS) we have identified two small, soluble and simple hits that even presenting antiplasmodial activities in the range of 0.4-0.5 µM are able to show in vivo activity.

7.
J Med Chem ; 54(15): 5540-61, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21696174

RESUMO

Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirimidinas/química , Triazóis/química , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Fenômenos Químicos , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Resistência a Medicamentos , Humanos , Camundongos , Plasmodium falciparum/enzimologia , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética , Triazóis/farmacologia
8.
J Med Chem ; 53(16): 6129-52, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20672841

RESUMO

Falcipain-2 and falcipain-3 are papain-family cysteine proteases of the malaria parasite Plasmodium falciparum that are responsible for host hemoglobin hydrolysis to provide amino acids for parasite protein synthesis. Different heteroarylnitrile derivatives were studied as potential falcipain inhibitors and therefore potential antiparasitic lead compounds, with the 5-substituted-2-cyanopyrimidine chemical class emerging as the most potent and promising lead series. Through a sequential lead optimization process considering the different positions present in the initial scaffold, nanomolar and subnanomolar inhibitors at falcipains 2 and 3 were identified, with activity against cultured parasites in the micromolar range. Introduction of protonable amines within lead molecules led to marked improvements of up to 1000 times in activity against cultured parasites without noteworthy alterations in other SAR tendencies. Optimized compounds presented enzymatic activities in the picomolar to low nanomolar range and antiparasitic activities in the low nanomolar range.


Assuntos
Antimaláricos/síntese química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Proteínas de Protozoários/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas Recombinantes/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA