Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003584

RESUMO

Diabetics are more vulnerable to SARS-CoV-2 neurological manifestations. The molecular mechanisms of SARS-CoV-2-induced cerebrovascular dysfunction in diabetes are unclear. We hypothesize that SARS-CoV-2 exacerbates diabetes-induced cerebrovascular oxidative stress and inflammation via activation of the destructive arm of the renin-angiotensin-aldosterone system (RAAS) and Toll-like receptor (TLR) signaling. SARS-CoV-2 spike protein was injected in humanized ACE2 transgenic knock-in mice. Cognitive functions, cerebral blood flow, cerebrovascular architecture, RAAS, and TLR signaling were used to determine the effect of SARS-CoV-2 spike protein in diabetes. Studies were mirrored in vitro using human brain microvascular endothelial cells treated with high glucose-conditioned media to mimic diabetic conditions. Spike protein exacerbated diabetes-induced cerebrovascular oxidative stress, inflammation, and endothelial cell death resulting in an increase in vascular rarefaction and diminished cerebral blood flow. SARS-CoV-2 spike protein worsened cognitive dysfunction in diabetes compared to control mice. Spike protein enhanced the destructive RAAS arm at the expense of the RAAS protective arm. In parallel, spike protein significantly exacerbated TLR signaling in diabetes, aggravating inflammation and cellular apoptosis vicious circle. Our study illustrated that SAR-CoV-2 spike protein intensified RAAS and TLR signaling in diabetes, increasing cerebrovascular damage and cognitive dysfunction.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , Camundongos , Animais , Sistema Renina-Angiotensina , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , COVID-19/complicações , Células Endoteliais/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Inflamação , Receptores Toll-Like/metabolismo , Camundongos Transgênicos
2.
Diabetologia ; 65(9): 1541-1554, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687178

RESUMO

AIMS/HYPOTHESIS: We have previously shown that diabetes causes pericyte dysfunction, leading to loss of vascular integrity and vascular cognitive impairment and dementia (VCID). Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), used in managing type 2 diabetes mellitus, improve the cognitive function of diabetic individuals beyond glycaemic control, yet the mechanism is not fully understood. In the present study, we hypothesise that GLP-1 RAs improve VCID by preventing diabetes-induced pericyte dysfunction. METHODS: Mice with streptozotocin-induced diabetes and non-diabetic control mice received either saline (NaCl 154 mmol/l) or exendin-4, a GLP-1 RA, through an osmotic pump over 28 days. Vascular integrity was assessed by measuring cerebrovascular neovascularisation indices (vascular density, tortuosity and branching density). Cognitive function was evaluated with Barnes maze and Morris water maze. Human brain microvascular pericytes (HBMPCs), were grown in high glucose (25 mmol/l) and sodium palmitate (200 µmol/l) to mimic diabetic conditions. HBMPCs were treated with/without exendin-4 and assessed for nitrative and oxidative stress, and angiogenic and blood-brain barrier functions. RESULTS: Diabetic mice treated with exendin-4 showed a significant reduction in all cerebral pathological neovascularisation indices and an improved blood-brain barrier (p<0.05). The vascular protective effects were accompanied by significant improvement in the learning and memory functions of diabetic mice compared with control mice (p<0.05). Our results showed that HBMPCs expressed the GLP-1 receptor. Diabetes increased GLP-1 receptor expression and receptor nitration in HBMPCs. Stimulation of HBMPCs with exendin-4 under diabetic conditions decreased diabetes-induced vascular inflammation and oxidative stress, and restored pericyte function (p<0.05). CONCLUSIONS/INTERPRETATION: This study provides novel evidence that brain pericytes express the GLP-1 receptor, which is nitrated under diabetic conditions. GLP-1 receptor activation improves brain pericyte function resulting in restoration of vascular integrity and BBB functions in diabetes. Furthermore, the GLP-1 RA exendin-4 alleviates diabetes-induced cognitive impairment in mice. Restoration of pericyte function in diabetes represents a novel therapeutic target for diabetes-induced cerebrovascular microangiopathy and VCID.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Pericitos , Animais , Encéfalo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Exenatida/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Camundongos , Pericitos/metabolismo
3.
Diabetologia ; 62(8): 1488-1500, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31073629

RESUMO

AIMS/HYPOTHESIS: Breakdown of the inner blood-retinal barrier (BRB) is an early event in the pathogenesis of diabetic macular oedema, that eventually leads to vision loss. We have previously shown that diabetes causes an imbalance of nerve growth factor (NGF) isoforms resulting in accumulation of its precursor proNGF and upregulation of the p75 neurotrophin receptor (p75NTR), with consequent increases in the activation of Ras homologue gene family, member A (RhoA). We also showed that genetic deletion of p75NTR in diabetes preserved the BRB and prevented inflammatory mediators in retinas. This study aims to examine the therapeutic potential of LM11A-31, a small-molecule p75NTR modulator and proNGF antagonist, in preventing diabetes-induced BRB breakdown. The study also examined the role of p75NTR/RhoA downstream signalling in mediating cell permeability. METHODS: Male C57BL/6 J mice were rendered diabetic using streptozotocin injection. After 2 weeks of diabetes, mice received oral gavage of LM11A-31 (50 mg kg-1 day-1) or saline (NaCl 154 mmol/l) for an additional 4 weeks. BRB breakdown was assessed by extravasation of BSA-AlexaFluor-488. Direct effects of proNGF were examined in human retinal endothelial (HRE) cells in the presence or absence of LM11A-31 or the Rho kinase inhibitor Y-27632. RESULTS: Diabetes triggered BRB breakdown and caused significant increases in circulatory and retinal TNF-α and IL-1ß levels. These effects coincided with significant decreases in retinal NGF and increases in vascular endothelial growth factor and proNGF expression, as well as activation of RhoA. Interventional modulation of p75NTR activity through treatment of mouse models of diabetes with LM11A-31 significantly mitigated proNGF accumulation and preserved BRB integrity. In HRE cells, treatment with mutant proNGF (10 ng/ml) triggered increased cell permeability with marked reduction of expression of tight junction proteins, zona occludens-1 (ZO-1) and claudin-5, compared with control, independent of inflammatory mediators or cell death. Modulating p75NTR significantly inhibited proNGF-mediated RhoA activation, occludin phosphorylation (at serine 490) and cell permeability. ProNGF induced redistribution of ZO-1 in the cell wall and formation of F-actin stress fibres; these effects were mitigated by LM11A-31. CONCLUSIONS/INTERPRETATION: Targeting p75NTR signalling using LM11A-31, an orally bioavailable receptor modulator, may offer an effective, safe and non-invasive therapeutic strategy for treating macular oedema, a major cause of blindness in diabetes.


Assuntos
Permeabilidade Capilar , Complicações do Diabetes/prevenção & controle , Retinopatia Diabética/metabolismo , Isoleucina/análogos & derivados , Morfolinas/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Glicemia/análise , Barreira Hematorretiniana , Peso Corporal , Células Endoteliais/metabolismo , Deleção de Genes , Humanos , Inflamação , Interleucina-1beta/metabolismo , Isoleucina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Receptor de Fator de Crescimento Neural/metabolismo , Retina/metabolismo , Retina/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
4.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443163

RESUMO

Retinal neurodegeneration, an early characteristic of several blinding diseases, triggers glial activation, resulting in inflammation, secondary damage and visual impairment. Treatments that aim only at neuroprotection have failed clinically. Here, we examine the impact of modulating thioredoxin interacting protein (TXNIP) to the inflammatory secondary damage and visual impairment in a model of ischemia/reperfusion (IR). Wild type (WT) and TXNIP knockout (TKO) mice underwent IR injury by increasing intraocular pressure for 40 min, followed by reperfusion. An additional group of WT mice received intravitreal TXNIP-antisense oligomers (ASO, 100 µg/2 µL) 2 days post IR injury. Activation of Müller glial cells, apoptosis and expression of inflammasome markers and visual function were assessed. IR injury triggered early TXNIP mRNA expression that persisted for 14 days and was localized within activated Müller cells in WT-IR, compared to sham controls. Exposure of Müller cells to hypoxia-reoxygenation injury triggered endoplasmic reticulum (ER) stress markers and inflammasome activation in WT cells, but not from TKO cells. Secondary damage was evident by the significant increase in the number of occluded acellular capillaries and visual impairment in IR-WT mice but not in IR-TKO. Intervention with TXNIP-ASO prevented ischemia-induced glial activation and neuro-vascular degeneration, and improved visual function compared to untreated WT. Targeting TXNIP expression may offer an effective approach in the prevention of secondary damage associated with retinal neurodegenerative diseases.


Assuntos
Proteínas de Transporte/metabolismo , Traumatismo por Reperfusão/metabolismo , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Gliose/metabolismo , Hipóxia/metabolismo , Inflamassomos/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/genética , Tiorredoxinas/genética
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 746-757, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253516

RESUMO

Impaired maturation of nerve growth factor precursor (proNGF) and its accumulation has been reported in several neurodegenerative diseases, myocardial infarction and diabetes. To elucidate the direct impact of proNGF accumulation identified the need to create a transgenic model that can express fully mutated cleavage-resistant proNGF. Using Cre-Lox technology, we developed an inducible endothelial-specific proNGF transgenic mouse (proNGFLoxp) that overexpresses GFP-conjugated cleavage-resistant proNGF123 when crossed with VE-cadherin-CreERT2 (Cre). Expression of proNGF, inflammatory mediators, NGF and VEGF was evaluated by PCR, Western blot and immunohistochemistry. EC-proNGF overexpression was confirmed using colocalization of anti-proNGF within retinal vasculature. EC-proNGF did not cause retinal neurotoxicity or marked glial activation at 4-weeks. Microvascular preparation from Cre-proNGF mice showed significant imbalance of proNGF/NGF ratio, enhanced expression of TNF-α and p75NTR, and tendency to impair TrkA phosphorylation compared to controls. EC-proNGF overexpression triggered mRNA expression of p75NTR and inflammatory mediators in both retina and renal cortex compared to controls. EC-proNGF expression induced vascular permeability including breakdown of BRB and albuminuria in the kidney without affecting VEGF level at 4-weeks. Histopathological changes were assessed after 8-weeks and the results showed that EC-proNGF triggered formation of occluded (acellular) capillaries, hall mark of retinal ischemia. EC-proNGF resulted in glomerular enlargement and kidney fibrosis, hall mark of renal dysfunction. We have successfully created an inducible mouse model that can dissect the contribution of autocrine direct action of cleavage-resistant proNGF on systemic microvascular abnormalities in both retina and kidney, major targets for microvascular complication.


Assuntos
Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Microvasos/fisiopatologia , Fator de Crescimento Neural/genética , Animais , Modelos Animais de Doenças , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/genética , Processamento de Proteína Pós-Traducional , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Vasos Retinianos/fisiopatologia
6.
Diabetologia ; 60(4): 740-750, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28116460

RESUMO

AIMS/HYPOTHESIS: Diabetes promotes cerebral neovascularisation via increased vascular endothelial growth factor (VEGF) angiogenic signalling. Roundabout-4 (ROBO4) protein is an endogenous inhibitor of VEGF signalling that stabilises the vasculature. Yet, how diabetes affects ROBO4 function remains unknown. We hypothesised that increased VEGF signalling in diabetes decreases ROBO4 expression and function via binding of ROBO4 with VEGF-activated ß3 integrin and that restoration of ROBO4 expression prevents/repairs cerebral neovascularisation in diabetes. METHODS: ROBO4 protein expression in a rat model of type 2 diabetes (Goto-Kakizaki [GK] rats) was examined by western blotting and immunohistochemistry. ROBO4 was locally overexpressed in the brain and in primary brain microvascular endothelial cells (BMVECs). GK rats were treated with SKLB1002, a selective VEGF receptor-2 (VEGFR-2) antagonist. Cerebrovascular neovascularisation indices were determined using a FITC vascular space-filling model. Immunoprecipitation was used to determine ROBO4-ß3 integrin interaction. RESULTS: ROBO4 expression was significantly decreased in the cerebral vasculature as well as in BMVECs in diabetes (p < 0.05). Silencing Robo4 increased the angiogenic properties of control BMVECs (p < 0.05). In vivo and in vitro overexpression of ROBO4 inhibited VEGF-induced angiogenic signalling and increased vessel maturation. Inhibition of VEGF signalling using SKLB1002 increased ROBO4 expression (p < 0.05) and reduced neovascularisation indices (p < 0.05). Furthermore, SKLB1002 significantly decreased ROBO4-ß3 integrin interaction in diabetes (p < 0.05). CONCLUSIONS/INTERPRETATION: Our study identifies the restoration of ROBO4 and inhibition of VEGF signalling as treatment strategies for diabetes-induced cerebral neovascularisation.


Assuntos
Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Neovascularização Patológica/genética , Ratos , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética
7.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R466-77, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27357799

RESUMO

The antihyperglycemic agent linagliptin, a dipeptidyl peptidase-4 (DPP-IV) inhibitor, has been shown to reduce inflammation and improve endothelial cell function. In this study, we hypothesized that DPP-IV inhibition with linagliptin would improve impaired cerebral perfusion in diabetic rats, as well as improve insulin-induced cerebrovascular relaxation and reverse pathological cerebrovascular remodeling. We further postulated that these changes would lead to a subsequent improvement of cognitive function. Male Type-2 diabetic and nondiabetic Goto-Kakizaki rats were treated with linagliptin for 4 wk, and blood glucose and DPP-IV plasma levels were assessed. Cerebral perfusion was assessed after treatment using laser-Doppler imaging, and dose response to insulin (10(-13) M-10(-6) M) in middle cerebral arteries was tested on a pressurized arteriograph. The impact of DPP-IV inhibition on diabetic cerebrovascular remodeling was assessed over a physiologically relevant pressure range, and changes in short-term hippocampus-dependent learning were observed using a novel object recognition test. Linagliptin lowered DPP-IV activity but did not change blood glucose or insulin levels in diabetes. Insulin-mediated vascular relaxation and cerebral perfusion were improved in the diabetic rats with linagliptin treatment. Indices of diabetic vascular remodeling, such as increased cross-sectional area, media thickness, and wall-to-lumen ratio, were also ameliorated; however, improvements in short-term hippocampal-dependent learning were not observed. The present study provides evidence that linagliptin treatment improves cerebrovascular dysfunction and remodeling in a Type 2 model of diabetes independent of glycemic control. This has important implications in diabetic patients who are predisposed to the development of cerebrovascular complications, such as stroke and cognitive impairment.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/fisiopatologia , Cognição/efeitos dos fármacos , Diabetes Mellitus Tipo 2/fisiopatologia , Linagliptina/administração & dosagem , Linagliptina/farmacologia , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Transtornos Cerebrovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Relação Dose-Resposta a Droga , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Masculino , Ratos , Resultado do Tratamento , Remodelação Vascular
8.
Am J Physiol Heart Circ Physiol ; 308(5): H456-66, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25552308

RESUMO

Admission hyperglycemia (HG) amplifies vascular injury and neurological deficits in acute ischemic stroke, but the mechanisms remain controversial. We recently reported that ischemia-reperfusion (I/R) injury impairs the myogenic response in both hemispheres via increased nitration. However, whether HG amplifies contralateral myogenic dysfunction and whether loss of tone in the contralateral hemisphere contributes to stroke outcomes remain to be determined. Our hypothesis was that contralateral myogenic dysfunction worsens stroke outcomes after acute hyperglycemic stroke in an oxidative stress-dependent manner. Male wild-type or SOD1 transgenic rats were injected with saline or 40% glucose solution 10 min before surgery and then subjected to 30 min of ischemia/45 min or 24 h of reperfusion. In another set of animals (n = 5), SOD1 was overexpressed only in the contralateral hemisphere by stereotaxic adenovirus injection 2-3 wk before I/R. Myogenic tone and neurovascular outcomes were determined. HG exacerbated myogenic dysfunction in contralateral side only, which was associated with infarct size expansion, increased edema, and more pronounced neurological deficit. Global and selective SOD1 overexpression restored myogenic reactivity in ipsilateral and contralateral sides, respectively, and enhanced neurovascular outcomes. In conclusion, our results show that SOD1 overexpression nullified the detrimental effects of HG on myogenic tone and stroke outcomes and that the contralateral hemisphere may be a novel target for the management of acute hyperglycemic stroke.


Assuntos
Hiperglicemia/complicações , Infarto da Artéria Cerebral Média/metabolismo , Acidente Vascular Cerebral/metabolismo , Superóxido Dismutase/metabolismo , Animais , Hiperglicemia/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase-1
9.
Am J Physiol Heart Circ Physiol ; 305(12): H1726-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097431

RESUMO

The myogenic response is crucial for maintaining vascular resistance to achieve constant perfusion during pressure fluctuations. Reduced cerebral blood flow has been reported in ischemic and nonischemic hemispheres after stroke. Ischemia-reperfusion injury and the resulting oxidative stress impair myogenic responses in the ischemic hemisphere. Yet, the mechanism by which ischemia-reperfusion affects the nonischemic side is still undetermined. The goal of the present study was to determine the effect of ischemia-reperfusion injury on the myogenic reactivity of cerebral vessels from both hemispheres and whether protein nitration due to excess peroxynitrite production is the underlying mechanism of loss of tone. Male Wistar rats were subjected to sham operation or 30-min middle cerebral artery occlusion/45-min reperfusion. Rats were administered saline, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), or the nitration inhibitor epicatechin at reperfusion. Middle cerebral arteries isolated from another set of control rats were exposed to ex vivo oxygen-glucose deprivation with and without glycoprotein 91 tat (NADPH oxidase inhibitor) or N(ω)-nitro-l-arginine methyl ester. Myogenic tone and nitrotyrosine levels were determined. Ischemia-reperfusion injury impaired the myogenic tone of vessels in both hemispheres compared with the sham group (P < 0.001). Vessels exposed to ex vivo oxygen-glucose deprivation experienced a similar loss of myogenic tone. Inhibition of peroxynitrite parent radicals significantly improved the myogenic tone. Peroxynitrite scavenging or inhibition of nitration improved the myogenic tone of vessels from ischemic (P < 0.001 and P < 0.05, respectively) and nonischemic (P < 0.01 and P < 0.05, respectively) hemispheres. Nitration was significantly increased in both hemispheres versus the sham group and was normalized with epicatechin treatment. In conclusion, ischemia-reperfusion injury impairs vessel reactivity in both hemispheres via nitration. We suggest that sham operation rather than the nonischemic side should be used as a control in preclinical stroke studies.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Artéria Cerebral Média/metabolismo , Músculo Liso Vascular/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Catequina/farmacologia , Masculino , Metaloporfirinas/farmacologia , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia
10.
Am J Physiol Heart Circ Physiol ; 304(6): H806-15, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335797

RESUMO

Hemorrhagic transformation is an important complication of acute ischemic stroke, particularly in diabetic patients receiving thrombolytic treatment with tissue plasminogen activator, the only approved drug for the treatment of acute ischemic stroke. The objective of the present study was to determine the effects of acute manipulation of potential targets for vascular protection [i.e., NF-κB, peroxynitrite, and matrix metalloproteinases (MMPs)] on vascular injury and functional outcome in a diabetic model of cerebral ischemia. Ischemia was induced by middle cerebral artery occlusion in control and type 2 diabetic Goto-Kakizaki rats. Treatment groups received a single dose of the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), the nonspecific NF-κB inhibitor curcumin, or the broad-spectrum MMP inhibitor minocycline at reperfusion. Poststroke infarct volume, edema, hemorrhage, neurological deficits, and MMP-9 activity were evaluated. All acute treatments reduced MMP-9 and hemorrhagic transformation in diabetic groups. In addition, acute curcumin and minocycline therapy reduced edema in these animals. Improved neurological function was observed in varying degrees with treatment, as indicated by beam-walk performance, modified Bederson scores, and grip strength; however, infarct size was similar to untreated diabetic animals. In control animals, all treatments reduced MMP-9 activity, yet bleeding was not improved. Neuroprotection was only conferred by curcumin and minocycline. Uncovering the underlying mechanisms contributing to the success of acute therapy in diabetes will advance tailored stroke therapies.


Assuntos
Curcumina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloporfirinas/uso terapêutico , Minociclina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/genética , Edema/tratamento farmacológico , Hemorragia/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Locomoção , Masculino , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/antagonistas & inibidores , Ácido Peroxinitroso/antagonistas & inibidores , Ratos , Ratos Mutantes , Ratos Wistar
11.
J Pharmacol Exp Ther ; 342(2): 407-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570365

RESUMO

Dysregulation of cerebral vascular function and, ultimately, cerebral blood flow (CBF) may contribute to complications such as stroke and cognitive decline in diabetes. We hypothesized that 1) diabetes-mediated neurovascular and myogenic dysfunction impairs CBF and 2) under hypoxic conditions, cerebral vessels from diabetic rats lose myogenic properties because of peroxynitrite (ONOO(-))-mediated nitration of vascular smooth muscle (VSM) actin. Functional hyperemia, the ability of blood vessels to dilate upon neuronal stimulation, and myogenic tone of isolated middle cerebral arteries (MCAs) were assessed as indices of neurovascular and myogenic function, respectively, in 10- to 12-week control and type 2 diabetic Goto-Kakizaki rats. In addition, myogenic behavior of MCAs, nitrotyrosine (NY) levels, and VSM actin content were measured under normoxic and hypoxic [oxygen glucose deprivation (OGD)] conditions with and without the ONOO(-) decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl) prophyrinato iron (III), chloride (FeTPPs). The percentage of myogenic tone was higher in diabetes, and forced dilation occurred at higher pressures. Functional hyperemia was impaired. Consistent with these findings, baseline CBF was lower in diabetes. OGD reduced the percentage of myogenic tone in both groups, and FeTPPs restored it only in diabetes. OGD increased VSM NY in both groups, and although FeTPPs restored basal levels, it did not correct the reduced filamentous/globular (F/G) actin ratio. Acute alterations in VSM ONOO(-) levels may contribute to hypoxic myogenic dysfunction, but this cannot be solely explained by the decreased F/G actin ratio due to actin nitration, and mechanisms may differ between control and diabetic animals. Our findings also demonstrate that diabetes alters the ability of cerebral vessels to regulate CBF under basal and hypoxic conditions.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Ácido Peroxinitroso/metabolismo , Actinas/metabolismo , Animais , Hipóxia Celular/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Hiperemia/metabolismo , Hiperemia/fisiopatologia , Masculino , Metaloporfirinas/farmacologia , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Ratos Wistar , Tirosina/análogos & derivados , Tirosina/metabolismo
12.
Vascul Pharmacol ; 131: 106761, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32585189

RESUMO

AIMS: Diabetes-induced retinal vascular cell death aggravates diabetic retinopathy (DR) to the proliferative stage and blindness. Pericytes play a crucial role in retinal capillaries survival, stability, and angiogenesis. Ephrin-B2 is a tyrosine kinase that regulates pericytes/endothelial cells communication during angiogenesis; yet, its role in DR is still unclear. We hypothesize that diabetes increases Ephrin-B2 signaling in pericytes, which contributes to inflammation and retinal vascular cell death. METHODS: Selective inhibition of the Ephrin-B2 expression in the retinal pericytes was achieved using an intraocular injection of adeno-associated virus (AAV) with a specific pericyte promotor. Vascular death was determined by retinal trypsin digest. Pathological angiogenesis was assessed using the oxygen-induced retinopathy model in pericyte-Ephrin-B2 knockout mice, wild type, and wild type injected with AAV. Angiogenic properties, inflammatory, and apoptotic markers were measured in human retinal pericytes (HRP) grown under diabetic conditions. KEY FINDING: Diabetes significantly increased the expression of Ephrin-B2, inflammatory, and apoptotic markers in the diabetic retinas and HRP. These effects were prevented by silencing Ephrin-B2 in HRP. Moreover, Ephrin-B2 silencing in retinal pericytes decreased pathological angiogenesis and acellular capillaries formation in diabetic retinas. SIGNIFICANCE: Increased Ephrin-B2 expression in the pericytes contributed to diabetes-induced retinal inflammation and vascular death. These results identify pericytes-Ephrin-B2 as a therapeutic target for DR.


Assuntos
Apoptose , Retinopatia Diabética/metabolismo , Efrina-B2/metabolismo , Pericitos/metabolismo , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Efrina-B2/deficiência , Efrina-B2/genética , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pericitos/patologia , Ratos Wistar , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina
14.
PLoS One ; 14(1): e0210523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30620753

RESUMO

We have previously shown that diabetes causes dysfunctional cerebral neovascularization that increases the risk for cerebrovascular disorders such as stroke and cognitive impairment. Pericytes (PCs) play a pivotal role in the angiogenic process through their interaction with the endothelial cells (EC). Yet, the role of PCs in dysfunctional cerebral neovascularization in diabetes is unclear. In the present study, we tested the hypothesis that the increased proangiogenic Ephrin-B2 signaling in PCs contributes to the dysfunctional cerebral neovascularization in diabetes. Type-II diabetes was induced by a combination of high fat diet and low dose streptozotocin injection in male Wistar rats. Selective in vivo Ephrin-B2 silencing in brain PCs was achieved using the stereotactic injection of adeno-associated virus (AAV) with NG2-promoter that expresses Ephrin-B2 shRNA. Neovascularization was assessed using vascular fluorescent dye stain. Novel object recognition (NOR) test was used to determine cognitive functions. Human brain microvascular pericytes HBMVPCs were grown in high glucose 25 mM and palmitate 200 uM (HG/Pal) to mimic diabetic conditions. Scratch migration and tube formation assays were conducted to evaluate PC/EC interaction and angiogenic functions in PC/EC co-culture. Diabetes increased the expression of Ephrin-B2 in the cerebrovasculature and pericytes. Concomitant increases in cerebral neovascularization parameters including vascular density, tortuosity and branching density in diabetic rats were accompanied by deterioration of cognitive function. Inhibition of Ephrin-B2 expression in PCs significantly restored cerebral vascularization and improved cognitive functions. HG/Pal increased PC/EC angiogenic properties in co-culture. Silencing Ephrin-B2 in PCs significantly reduced PC migration and PC/EC co-culture angiogenic properties. This study emphasizes the significant contribution of PCs to the pathological neovascularization in diabetes. Our findings introduce Ephrin-B2 signaling as a promising therapeutic target to improve cerebrovascular integrity in diabetes.


Assuntos
Encéfalo/irrigação sanguínea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Efrina-B2/metabolismo , Neovascularização Patológica/metabolismo , Pericitos/metabolismo , Animais , Movimento Celular/genética , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Efrina-B2/genética , Masculino , Interferência de RNA , Ratos Wistar , Transdução de Sinais/genética
15.
Compr Physiol ; 8(2): 773-799, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29687902

RESUMO

Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.


Assuntos
Circulação Cerebrovascular/fisiologia , Doenças Metabólicas/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipocampo/irrigação sanguínea , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Liso Vascular/fisiopatologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Acoplamento Neurovascular/fisiologia
16.
World J Diabetes ; 8(2): 56-65, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28265343

RESUMO

AIM: To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS: Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid (PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin (BSA) (400 µmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, miR-17-5p mRNA, as well as nucleotide-binding oligomerization domain-like receptor protein (NLRP3) and IL1ß protein was determined. RESULTS: High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers (P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased miR-17-5p expression, which were restored by inhibiting endoplasmic reticulum-stress with PBA (P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced miR-17-5p and induced thioredoxin interacting protein mRNA in retinal Müller glial cell line (P < 0.05). Palmitate upregulated NLRP3 and IL1ß expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1ß. CONCLUSION: Our work suggests that targeting endoplasmic reticulum-stress or thioredoxin interacting protein are potential therapeutic strategies for early intervention of obesity-induced retinal inflammation.

17.
Antioxidants (Basel) ; 6(3)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661427

RESUMO

BACKGROUND: Previous work demonstrated that high-fat diet (HFD) triggered thioredoxin-interacting protein (TXNIP) and that silencing TXNIP prevents diabetes-impaired vascular recovery. Here, we examine the impact of genetic deletion of TXNIP on HFD-impaired vascular recovery using hind limb ischemia model. METHODS: Wild type mice (WT, C57Bl/6) and TXNIP knockout mice (TKO) were fed either normal chow diet (WT-ND and TKO-ND) or 60% high-fat diet (WT-HFD and TKO-HFD). After four weeks of HFD, unilateral hind limb ischemia was performed and blood flow was measured using Laser doppler scanner at baseline and then weekly for an additional three weeks. Vascular density, nitrative stress, infiltration of CD68+ macrophages, and expression of inflammasome, vascular endothelial growth factor (VEGF), VEGF receptor-2 were examined by slot blot, Western blot and immunohistochemistry. RESULTS: By week 8, HFD caused similar increases in weight, cholesterol and triglycerides in both WT and TKO. At week 4 and week 8, HFD significantly impaired glucose tolerance in WT and to a lesser extent in TKO. HFD significantly impaired blood flow and vascular density (CD31 labeled) in skeletal muscle of WT mice compared to ND but not in TKO. HFD and ischemia significantly induced tyrosine nitration, and systemic IL-1ß and infiltration of CD68+ cells in skeletal muscle from WT but not from TKO. HFD significantly increased cleaved-caspase-1 and IL-1 ß compared to ND. Under both ND, ischemia tended to increase VEGF expression and increased VEGFR2 activation in WT only but not TKO. CONCLUSION: Similar to prior observation in diabetes, HFD-induced obesity can compromise vascular recovery in response to ischemic insult. The mechanism involves increased TXNIP-NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome activation, nitrative stress and impaired VEGFR2 activation. Deletion of TXNIP restored blood flow, reduced nitrative stress and blunted inflammasome-mediated inflammation; however, it did not impact VEGF/VEGFR2 in HFD. Targeting TXNIP-NLRP3 inflammasome can provide potential therapeutic target in obesity-induced vascular complication.

18.
Life Sci ; 163: 46-54, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27558234

RESUMO

UNLABELLED: Ischemia/reperfusion and the resulting oxidative/nitrative stress impair cerebral myogenic tone via actin depolymerization. While it is known that NADPH oxidase (Nox) family is a major source of vascular oxidative stress; the extent and mechanisms by which Nox activation contributes to actin depolymerization, and equally important, the relative role of Nox isoforms in this response is not clear. AIM: To determine the role of Nox4 in hypoxia-mediated actin depolymerization and myogenic-tone impairment in cerebral vascular smooth muscle. MAIN METHODS: Control and Nox4 deficient (siRNA knock-down) human brain vascular smooth muscle cells (HBVSMC) were exposed to 30-min hypoxia/45-min reoxygenation. Nox2, Nox4, inducible and neuronal nitric oxide synthase (iNOS and nNOS) and nitrotyrosine levels as well as F:G actin were determined. Myogenic-tone was measured using pressurized arteriography in middle cerebral artery isolated from rats subjected to sham, 30-min ischemia/45-min reperfusion or ex-vivo oxygen glucose deprivation in the presence and absence of Nox inhibitors. RESULTS: Nox4 and iNOS expression were significantly upregulated following hypoxia or ischemia/reperfusion. Hypoxia augmented nitrotyrosine levels while reducing F actin. These effects were nullified by inhibiting nitration with epicatechin or pharmacological or molecular inhibition of Nox4. Ischemia/reperfusion impaired myogenic-tone, which was restored by the selective inhibition of Nox4. CONCLUSION: Nox4 activation in VSMCs contributes to actin depolymerization after hypoxia, which could be the underlying mechanism for myogenic-tone impairment following ischemia/reperfusion.


Assuntos
Citoesqueleto de Actina/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidases/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Humanos , Glicoproteínas de Membrana/metabolismo , Artéria Cerebral Média/fisiologia , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Traumatismo por Reperfusão/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima
19.
Middle East Afr J Ophthalmol ; 22(2): 135-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949069

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults in United States. Research indicates an association between oxidative stress and the development of diabetes complications. However, clinical trials with general antioxidants have failed to prove effective in diabetic patients. Mounting evidence from experimental studies that continue to elucidate the damaging effects of oxidative stress and inflammation in both vascular and neural retina suggest its critical role in the pathogenesis of DR. This review will outline the current management of DR as well as present potential experimental therapeutic interventions, focusing on molecules that link oxidative stress to inflammation to provide potential therapeutic targets for treatment or prevention of DR. Understanding the biochemical changes and the molecular events under diabetic conditions could provide new effective therapeutic tools to combat the disease.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/etiologia , Inibidores da Angiogênese/uso terapêutico , Complicações do Diabetes , Retinopatia Diabética/metabolismo , Humanos , NADPH Oxidases/efeitos adversos , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ácido Peroxinitroso/efeitos adversos , Ácido Peroxinitroso/metabolismo , Estados Unidos
20.
Diabetes ; 64(5): 1804-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25524911

RESUMO

Diabetes impedes vascular repair and causes vasoregression in the brain after stroke, but mechanisms underlying this response are still unclear. We hypothesized that excess peroxynitrite formation in diabetic ischemia/reperfusion (I/R) injury inactivates the p85 subunit of phosphoinositide 3-kinase (PI3K) by nitration and diverts the PI3K-Akt survival signal to the p38-mitogen-activated protein kinase apoptosis pathway. Nitrotyrosine (NY), Akt and p38 activity, p85 nitration, and caspase-3 cleavage were measured in brains from control, diabetic (GK), or metformin-treated GK rats subjected to sham or stroke surgery and in brain microvascular endothelial cells (BMVECs) from Wistar and GK rats subjected to hypoxia/reoxygenation injury. GK rat brains showed increased NY, caspase-3 cleavage, and p38 activation and decreased Akt activation. Metformin attenuated stroke-induced nitrative signaling in GK rats. GK rat BMVECs showed increased basal nitrative stress compared with controls. A second hit by hypoxia/reoxygenation injury dramatically increased the nitration of p85 and activation of p38 but decreased Akt. These effects were associated with impairment of angiogenic response and were restored by treatment with the peroxynitrite scavenger 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron III chloride or the nitration inhibitor epicatechin. Our results provide evidence that I/R-induced peroxynitrite inhibits survival, induces apoptosis, and promotes peroxynitrite as a novel therapeutic target for the improvement of reparative angiogenesis after stroke in diabetes.


Assuntos
Encéfalo/fisiologia , Diabetes Mellitus/tratamento farmacológico , Metformina/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Animais , Apoptose , Encéfalo/irrigação sanguínea , Diabetes Mellitus/metabolismo , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Traumatismo por Reperfusão , Transdução de Sinais/fisiologia , Estresse Fisiológico , Acidente Vascular Cerebral/metabolismo , Tirosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA