Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 4): 719-26, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24338369

RESUMO

Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.


Assuntos
Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Metabolismo dos Carboidratos , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Imagem com Lapso de Tempo
2.
iScience ; 26(8): 107372, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37539029

RESUMO

Encapsulated cell therapy holds a great potential to deliver sustained levels of highly potent therapeutic proteins to patients and improve chronic disease management. A versatile encapsulation device that is biocompatible, scalable, and easy to administer, retrieve, or replace has yet to be validated for clinical applications. Here, we report on a cargo-agnostic, macroencapsulation device with optimized features for protein delivery. It is compatible with adherent and suspension cells, and can be administered and retrieved without burdensome surgical procedures. We characterized its biocompatibility and showed that different cell lines producing different therapeutic proteins can be combined in the device. We demonstrated the ability of cytokine-secreting cells encapsulated in our device and implanted in human skin to mobilize and activate antigen-presenting cells, which could potentially serve as an effective adjuvant strategy in cancer immunization therapies. We believe that our device may contribute to cell therapies for cancer, metabolic disorders, and protein-deficient diseases.

3.
Mol Biol Cell ; 27(12): 1875-84, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27122604

RESUMO

Like other eukaryotes, Saccharomyces cerevisiae spatially organizes its chromosomes within the nucleus. In G1 phase, the yeast's 32 telomeres are clustered into 6-10 foci that dynamically interact with the nuclear membrane. Here we show that, when cells leave the division cycle and enter quiescence, telomeres gather into two to three hyperclusters at the nuclear membrane vicinity. This localization depends on Esc1 but not on the Ku proteins. Telomere hypercluster formation requires the Sir complex but is independent of the nuclear microtubule bundle that specifically assembles in quiescent cells. Importantly, mutants deleted for the linker histone H1 Hho1 or defective in condensin activity or affected for histone H4 Lys-16 deacetylation are impaired, at least in part, for telomere hypercluster formation in quiescence, suggesting that this process involves chromosome condensation. Finally, we establish that telomere hypercluster formation is not necessary for quiescence establishment, maintenance, and exit, raising the question of the physiological raison d'être of this nuclear reorganization.


Assuntos
Telômero/metabolismo , Telômero/fisiologia , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Heterocromatina/metabolismo , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo
4.
J Cell Biol ; 210(1): 99-113, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26124291

RESUMO

Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.


Assuntos
Microtúbulos/metabolismo , Schizosaccharomyces/metabolismo , Polaridade Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Estabilidade Proteica , Transporte Proteico , Schizosaccharomyces/citologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Corpos Polares do Fuso/metabolismo , Tubulina (Proteína)/metabolismo
5.
J Cell Biol ; 203(4): 585-94, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24247429

RESUMO

The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochores remain attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit.


Assuntos
Ciclo Celular , Núcleo Celular/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/ultraestrutura , Complexo Dinactina , Dineínas/metabolismo , Viabilidade Microbiana , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Mutantes/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA