Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
2.
Histochem Cell Biol ; 160(4): 321-339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37306742

RESUMO

This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Colite/metabolismo , Colite/patologia
3.
Purinergic Signal ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038801

RESUMO

Purinergic signaling has been associated with immune defenses against pathogens such as bacteria, protozoa, fungi, and viruses, acting as a sentinel system that signals to the cells when a threat is present. This review focuses on the roles of purinergic signaling and its therapeutic potential for viral infections. In this context, the purinergic system may play potent antiviral roles by boosting interferon signaling. In other cases, though, it can contribute to a hyperinflammatory response and disease severity, resulting in poor outcomes, such as during flu and potentially COVID-19. Lastly, a third situation may occur since viruses are obligatory intracellular parasites that hijack the host cell machinery for their infection and replication. Viruses such as HIV-1 use the purinergic system to favor their infection and persistence within the host cell. Therefore, understanding the particular nuances of purinergic signaling in each viral infection may contribute to designing proper therapeutic strategies to treat viral diseases.

4.
J Immunol ; 206(10): 2441-2452, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941658

RESUMO

Intestinal barrier is essential for dietary products and microbiota compartmentalization and therefore gut homeostasis. When this barrier is broken, cecal content overflows into the peritoneal cavity, leading to local and systemic robust inflammatory response, characterizing peritonitis and sepsis. It has been shown that IL-1ß contributes with inflammatory storm during peritonitis and sepsis and its inhibition has beneficial effects to the host. Therefore, we investigated the mechanisms underlying IL-1ß secretion using a widely adopted murine model of experimental peritonitis. The combined injection of sterile cecal content (SCC) and the gut commensal bacteria Bacteroides fragilis leads to IL-1ß-dependent peritonitis, which was mitigated in mice deficient in NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome components. Typically acting as a damage signal, SCC, but not B. fragilis, activates canonical pathway of NLRP3 promoting IL-1ß secretion in vitro and in vivo. Strikingly, absence of fiber in the SCC drastically reduces IL-1ß production, whereas high-fiber SCC conversely increases this response in an NLRP3-dependent manner. In addition, NLRP3 was also required for IL-1ß production induced by purified dietary fiber in primed macrophages. Extending to the in vivo context, IL-1ß-dependent peritonitis was worsened in mice injected with B. fragilis and high-fiber SCC, whereas zero-fiber SCC ameliorates the pathology. Corroborating with the proinflammatory role of dietary fiber, IL-1R-deficient mice were protected from peritonitis induced by B. fragilis and particulate bran. Overall, our study highlights a function, previously unknown, for dietary fibers in fueling peritonitis through NLRP3 activation and IL-1ß secretion outside the gut.


Assuntos
Infecções por Bacteroides/imunologia , Bacteroides fragilis/imunologia , Fibras na Dieta/efeitos adversos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Peritonite/imunologia , Animais , Infecções por Bacteroides/microbiologia , Dieta , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peritonite/microbiologia , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
5.
J Cell Sci ; 133(5)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005701

RESUMO

Macrophages are tissue-resident immune cells that are crucial for the initiation and maintenance of immune responses. Purinergic signaling modulates macrophage activity and impacts cellular plasticity. The ATP-activated purinergic receptor P2X7 (also known as P2RX7) has pro-inflammatory properties, which contribute to macrophage activation. P2X7 receptor signaling is, in turn, modulated by ectonucleotidases, such as CD39 (also known as ENTPD1), expressed in caveolae and lipid rafts. Here, we examined P2X7 receptor activity and determined impacts on ectonucleotidase localization and function in macrophages primed with lipopolysaccharide (LPS). First, we verified that ATP boosts CD39 activity and caveolin-1 protein expression in LPS-primed macrophages. Drugs that disrupt cholesterol-enriched domains - such as nystatin and methyl-ß-cyclodextrin - decreased CD39 enzymatic activity in all circumstances. We noted that CD39 colocalized with lipid raft markers (flotillin-2 and caveolin-1) in macrophages that had been primed with LPS followed by treatment with ATP. P2X7 receptor inhibition blocked these ATP-mediated increases in caveolin-1 expression and inhibited the colocalization with CD39. Further, we found that STAT3 activation is significantly attenuated caveolin-1-deficient macrophages treated with LPS or LPS+BzATP. Taken together, our data suggest that P2X7 receptor triggers the initiation of lipid raft-dependent mechanisms that upregulates CD39 activity and could contribute to limit macrophage responses restoring homeostasis.


Assuntos
Caveolina 1 , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina , Caveolina 1/genética , Lipopolissacarídeos , Macrófagos , Microdomínios da Membrana , Receptores Purinérgicos P2X7/genética
6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563010

RESUMO

Background: Given the role of the P2X7 receptor (P2X7R) in inflammatory bowel diseases (IBD), we investigated its role in the development and progression of colitis-associated colorectal cancer (CA-CRC). Methods: CA-CRC was induced in P2X7R+/+ and P2X7R-/- mice with azoxymethane (AOM) combined with dextran sodium sulfate (DSS). In a therapeutic protocol, P2X7R+/+ mice were treated with a P2X7R-selective inhibitor (A740003). Mice were evaluated with follow-up video endoscopy with endoluminal ultrasound biomicroscopy. Colon tissue was analyzed for histological changes, densities of immune cells, expression of transcription factors, cytokines, genes, DNA methylation, and microbiome composition of fecal samples by sequencing for 16S rRNA. Results: The P2X7R+/+ mice displayed more ulcers, tumors, and greater wall thickness, than the P2X7R-/- and the P2X7R+/+ mice treated with A740003. The P2X7R+/+ mice showed increased accumulation of immune cells, production of proinflammatory cytokines, activation of intracellular signaling pathways, and upregulation of NLRP3 and NLRP12 genes, stabilized after the P2X7R-blockade. Microbial changes were observed in the P2X7R-/- and P2X7R+/+-induced mice, partially reversed by the A740003 treatment. Conclusions: Regulatory mechanisms activated downstream of the P2X7R in combination with signals from a dysbiotic microbiota result in the activation of intracellular signaling pathways and the inflammasome, amplifying the inflammatory response and promoting CA-CRC development.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Inflamassomos , Receptores Purinérgicos P2X7 , Animais , Carcinogênese/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Ribossômico 16S , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
7.
PLoS Pathog ; 15(6): e1007887, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233552

RESUMO

Leishmaniasis is a neglected tropical disease affecting millions of individuals worldwide. P2X7 receptor has been linked to the elimination of Leishmania amazonensis. Biological responses evoked by P2X7 receptor activation have been well-documented, including apoptosis, phagocytosis, cytokine release, such as IL-1ß. It was demonstrated that NLRP3 inflammasome activation and IL-1ß signaling participated in resistance against L. amazonensis. Furthermore, our group has shown that L. amazonensis elimination through P2X7 receptor activation depended on leukotriene B4 (LTB4) production and release. Therefore, we investigated whether L. amazonensis elimination by P2X7 receptor and LTB4 involved NLRP3 inflammasome activation and IL-1ß signaling. We showed that macrophages from NLRP3-/-, ASC-/-, Casp-1/11-/-, gp91phox-/- , and IL-1R-/- mice treated with ATP or LTB4 did not decrease parasitic load as was observed in WT mice. When ASC-/- macrophages were treated with exogenous IL-1ß, parasite killing was noted, however, we did not see parasitic load reduction in IL-1R-/- macrophages. Similarly, macrophages from P2X7 receptor-deficient mice treated with IL-1ß also showed decreased parasitic load. In addition, when we infected Casp-11-/- macrophages, neither ATP nor LTB4 were able to reduce parasitic load, and Casp-11-/- mice were more susceptible to L. amazonensis infection than were WT mice. Furthermore, P2X7-/- L. amazonensis-infected mice locally treated with exogenous LTB4 showed resistance to infection, characterized by lower parasite load and smaller lesions compared to untreated P2X7-/- mice. A similar observation was noted when infected P2X7-/- mice were treated with IL-1ß, i.e., lower parasite load and smaller lesions compared to P2X7-/- mice. These data suggested that L. amazonensis elimination mediated by P2X7 receptor and LTB4 was dependent on non-canonical NLRP3 inflammasome activation, ROS production, and IL-1ß signaling.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Leucotrieno B4/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/imunologia , Animais , Inflamassomos/genética , Interleucina-1beta/genética , Leishmaniose/genética , Leishmaniose/patologia , Leucotrieno B4/genética , Macrófagos/parasitologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Purinérgicos P2X7/genética , Transdução de Sinais/genética
8.
Brain Behav Immun ; 95: 287-298, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838250

RESUMO

Sepsis survivors show long-term impairments, including alterations in memory and executive function. Evidence suggests that systemic inflammation contributes to the progression of Alzheimers disease (AD), but the mechanisms involved in this process are still unclear. Boosted (trained) and diminished (tolerant) innate immune memory has been described in peripheral immune cells after sepsis. However, the occurrence of long-term innate immune memory in the post-septic brain is fully unexplored. Here, we demonstrate that sepsis causes long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to Aß oligomers (AßO), central neurotoxins found in AD. Hippocampal microglia from sepsis-surviving mice shift to an amoeboid/phagocytic morphological profile when exposed to low amounts of AßO, and this event was accompanied by the upregulation of several pro-inflammatory proteins (IL-1ß, IL-6, INF-γ and P2X7 receptor) in the mouse hippocampus, suggesting that a trained innate immune memory occurs in the brain after sepsis. Brain exposure to low amounts of AßO increased microglial phagocytic ability against hippocampal synapses. Pharmacological blockage of brain phagocytic cells or microglial depletion, using minocycline and colony stimulating factor 1 receptor inhibitor (PLX3397), respectively, prevents cognitive dysfunction induced by AßO in sepsis-surviving mice. Altogether, our findings suggest that sepsis induces a long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to AßO-induced neurotoxicity and cognitive impairment.


Assuntos
Doença de Alzheimer , Sepse , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Memória Imunológica , Camundongos , Microglia/metabolismo
9.
Am J Physiol Cell Physiol ; 318(5): C832-C835, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159362

RESUMO

Danger sensing is one of the most fundamental evolutionary features enabling multicellular organisms to perceive potential threats, escape from risky situations, fight actual intruders, and repair damage. Several endogenous molecules are used to "signal damage," currently referred to as "alarmins" or "damage-associated molecular patterns" (DAMPs), most being already present within all cells (preformed DAMPs), and thus ready to be released, and others neosynthesized following injury. Over recent years it has become overwhelmingly clear that adenosine 5'-triphosphate (ATP) is a ubiquitous and extremely efficient DAMP (thus promoting inflammation), and its main metabolite, adenosine, is a strong immunosuppressant (thus dampening inflammation). Extracellular ATP ligates and activates the P2 purinergic receptors (P2Rs) and is then degraded by soluble and plasma membrane ecto-nucleotidases to generate adenosine acting at P1 purinergic receptors (P1Rs). Extracellular ATP, P2Rs, ecto-nucleotidases, adenosine, and P1Rs are basic elements of the purinergic signaling network and fundamental pillars of inflammation.


Assuntos
Alarminas/genética , Inflamação/metabolismo , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P2/genética , Adenosina/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Alarminas/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Imunossupressores/metabolismo , Inflamação/fisiopatologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/genética
10.
Eur J Immunol ; 49(6): 928-939, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30888047

RESUMO

Creatine (Cr) is a substrate for adenosine triphosphate synthesis, and it is the most used dietary supplement among professional and recreative athletes and sportsmen. Creatine supplementation may increase allergic airway response, but the cellular and molecular mechanisms are unknown. We used murine model of OVA-induced chronic asthma and showed that Cr supplementation increased total proteins, ATP level, lymphocytes, macrophages, and IL-5 levels in BALF, as well as IL-5 in the supernatant of re-stimulated mediastinal lymph nodes. IL-5 and IL-13 expression by epithelial cells and by peribronchial leukocytes were increased by Cr. Cr augmented the expression of P2 × 7 receptor by peribronchial leukocytes and by epithelial cells, and increased the accumulation of eosinophils in peribronchial space and of collagen fibers in airway wall. In human cells, while Cr induced a release of ATP, IL-6, and IL-8 from BEAS-2B cells, whole blood cells, such as eosinophils, and CD4+ T cells, P2 × 7 receptor inhibitor (A740003) reduced such effects, as denoted by reduced levels of ATP, IL-6, and IL-8. Therefore, Cr supplementation worsened asthma pathology due to activation of airway epithelial cells and peribronchial leukocytes, involving purinergic signaling.


Assuntos
Asma/patologia , Creatina/toxicidade , Suplementos Nutricionais/toxicidade , Pneumonia/patologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Asma/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/metabolismo
11.
Am J Pathol ; 189(4): 730-738, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30653952

RESUMO

Toxoplasmosis is a neglected disease that affects millions of individuals worldwide. Toxoplasma gondii infection is an asymptomatic disease, with lethal cases occurring mostly in HIV patients and organ transplant recipients. Nevertheless, atypical strains of T. gondii in endemic locations cause severe pathology in healthy individuals. Toxoplasmosis has no cure but it can be controlled by the proinflammatory immune response. The purinergic receptor P2X7 (P2X7) is involved in many inflammatory events and has been associated with genes that confer resistance against toxoplasmosis in humans. In vitro studies have reported parasite death after P2X7-receptor activation in various cell types. To understand the contribution of P2X7 during cerebral toxoplasmosis, wild-type and P2rx7 knockout mice were infected orally with T. gondii and their pathologic profiles were analyzed. We found that all P2rx7-/- mice died 8 weeks after infection with an increased number of cysts and fewer inflammatory infiltrates in their brains. The cytokines interleukin-1ß, interleukin-12, tumor necrosis factor-α, and reactive oxygen species were absent or reduced in P2rx7-/- mice. Taken together, these data suggest that the P2X7 receptor promotes inflammatory infiltrates, proinflammatory cytokines, and reactive oxygen species production in the brain, and that P2X7 signaling mediates major events that confer resistance to cerebral toxoplasmosis.


Assuntos
Encéfalo/patologia , Suscetibilidade a Doenças , Inflamação/etiologia , Receptores Purinérgicos P2X7/fisiologia , Toxoplasma/patogenicidade , Toxoplasmose Cerebral/etiologia , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Citocinas/metabolismo , Feminino , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Toxoplasmose Cerebral/metabolismo , Toxoplasmose Cerebral/patologia
12.
Cytometry A ; 97(11): 1109-1126, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32633884

RESUMO

Tumor-associated macrophages are widely recognized for their importance in guiding pro-tumoral or antitumoral responses. Mediating inflammation or immunosuppression, these cells support many key events in cancer progression: cell growth, chemotaxis, invasiveness, angiogenesis and cell death. The communication between cells in the tumor microenvironment strongly relies on the secretion and recognition of several molecules, including damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP). Extracellular ATP (eATP) and its degradation products act as signaling molecules and have extensively described roles in immune response and inflammation, as well as in cancer biology. These multiple functions highlight the purinergic system as a promising target to investigate the interplay between macrophages and cancer cells. Here, we reviewed purinergic signaling pathways connecting cancer cells and macrophages, a yet poorly investigated field. Finally, we present a new tool for the characterization of macrophage phenotype within the tumor. Image cytometry emerges as a cutting-edge tool, capable of providing a broad set of information on cell morphology, expression of specific markers, and its cellular or subcellular localization, preserving cell-cell interactions within the tumor section and providing high statistical strength in small-sized experiments. Thus, image cytometry allows deeper investigation of tumor heterogeneity and interactions between these cells. © 2020 International Society for Advancement of Cytometry.


Assuntos
Microambiente Tumoral , Macrófagos Associados a Tumor , Trifosfato de Adenosina , Humanos , Macrófagos , Transdução de Sinais
13.
Brain Behav Immun ; 89: 480-490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717399

RESUMO

The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.


Assuntos
Infecções do Sistema Nervoso Central/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Complexo AIDS Demência/metabolismo , Betacoronavirus , COVID-19 , Infecções por Coronavirus/metabolismo , Encefalite por Herpes Simples/metabolismo , Humanos , Malária/metabolismo , Meningites Bacterianas/metabolismo , Meningite Criptocócica/metabolismo , Pandemias , Pneumonia Viral/metabolismo , SARS-CoV-2 , Sepse/metabolismo , Transdução de Sinais , Toxoplasmose Cerebral/metabolismo , Infecção por Zika virus/metabolismo
14.
Purinergic Signal ; 16(4): 561-572, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33090332

RESUMO

Sepsis is a severe disease characterized by an uncontrolled systemic inflammation and consequent organ dysfunction generated in response to an infection. Extracellular ATP acting through the P2X7 receptor induces the maturation and release of pro-inflammatory cytokines (i.e., IL-1ß) and the production of reactive nitrogen and oxygen species that lead to oxidative tissue damage. Here, we investigated the role of the P2X7 receptor in inflammation, oxidative stress, and liver injury in sepsis. Sepsis was induced by cecal ligation and puncture (CLP) in wild-type (WT) and P2X7 knockout (P2X7-/-) mice. The oxidative stress in the liver of septic mice was assessed by 2',7'-dichlorofluorescein oxidation reaction (DCF), thiobarbituric acid-reactive substances (TBARS), and nitrite levels dosage. The status of the endogenous defense system was evaluated through catalase (CAT) and superoxide dismutase (SOD) activities. The inflammation was assessed histologically and by determining the expression of inflammatory cytokines and chemokines by RT-qPCR. We observed an increase in the reactive species and lipid peroxidation in the liver of septic WT mice, but not in the liver from P2X7-/- animals. We found an imbalance SOD/CAT ratio, also only WT septic animals. The number of inflammatory cells and the gene expression of IL-1 ß, IL-6, TNF-α, IL-10, CXCL1, and CXCL2 were higher in the liver of WT septic mice in comparison to P2X7-/- septic animals. In summary, our results suggest that the P2X7 receptor might be a therapeutic target to limit oxidative stress damage and liver injury during sepsis.


Assuntos
Hepatopatias/metabolismo , Estresse Oxidativo/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/patologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
BMC Nephrol ; 21(1): 206, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471386

RESUMO

BACKGROUND: Previous study showed that purinergic P2X7 receptors (P2X7R) reach the highest expression in the first week after unilateral ureteral obstruction (UUO) in mice, and are involved in the process of inflammation, apoptosis and fibrosis of renal tissue. We, herein, document the role of purinergic P2X7 receptors activation on the third day of UUO, as assessed by means of BBG as its selective inhibitor. METHODS: We investigated the effects of brilliant blue G (BBG), a P2X7R antagonist, in the third day of kidney tissue response to UUO in rats. For this purpose, male Wistar rats submitted to UUO or sham operated, received BBG or vehicle (V), comprising four groups: UUO-BBG, UUO-V, sham-BBG and sham-V. The kidneys were harvested on day 3 UUO and prepared for histology, immunohistochemistry (P2X7R, PCNA, CD-68, α-sma, TGF-ß1, Heat-shock protein-47, TUNEL assay), quantitative real-time PCR (IL-1ß, procollagens type I, III, and IV) for mRNA quantification. RESULTS: The group UUO-V presented an enhancement in tubular cell P2X7-R expression, increase influx of macrophages and myofibroblasts, HSP-47 and TGF- ß1 expression. Also, upregulation of procollagen types I, III, and IV, and IL-1ß mRNAs were seen. On the other hand, group UUO-BBG showed lower expression of procollagens and IL-1ß mRNAs, as well as less immunoreactivity of HSP-47, TGF-ß, macrophages, myofibroblasts, and tubular apoptosis. This group also presented increased epithelial cell proliferation. CONCLUSION: BBG, a known highly selective inhibitor of P2X7R, attenuated renal inflammation, collagen synthesis, renal cell apoptosis, and enhanced renal cell proliferation in the early phase of rat model of UUO.


Assuntos
Proliferação de Células/efeitos dos fármacos , Rim/patologia , Nefrite/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Corantes de Rosanilina/uso terapêutico , Obstrução Ureteral/complicações , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose/efeitos dos fármacos , Movimento Celular , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Colágeno Tipo IV/genética , Fibrose , Proteínas de Choque Térmico HSP47/metabolismo , Interleucina-1beta/genética , Rim/metabolismo , Túbulos Renais/patologia , Macrófagos/fisiologia , Masculino , Miofibroblastos/fisiologia , Nefrite/etiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Corantes de Rosanilina/farmacologia , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
16.
Mediators Inflamm ; 2020: 2545682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061823

RESUMO

Leishmaniasis is a neglected tropical disease caused by an intracellular parasite of the genus Leishmania. Damage-associated molecular patterns (DAMPs) such as UTP and ATP are released from infected cells and, once in the extracellular medium, activate P2 purinergic receptors. P2Y2 and P2X7 receptors cooperate to control Leishmania amazonensis infection. NLRP3 inflammasome activation and IL-1ß release resulting from P2X7 activation are important for outcomes of L. amazonensis infection. The cytokine IL-1ß is required for the control of intracellular parasites. In the present study, we investigated the involvement of the P2Y2 receptor in the activation of NLRP3 inflammasome elements (caspase-1 and 11) and IL-1ß secretion during L. amazonensis infection in peritoneal macrophages as well as in a murine model of cutaneous leishmaniasis. We found that 2-thio-UTP (a selective P2Y2 agonist) reduced parasite load in L. amazonensis-infected murine macrophages and in the footpads and lymph nodes of infected mice. The antiparasitic effects triggered by P2Y2 activation were not observed when cells were pretreated with a caspase-1 inhibitor (Z-YVAD-FMK) or in macrophages from caspase-1/11 knockout mice (CASP-1,11-/-). We also found that UTP treatment induced IL-1ß secretion in wild-type (WT) infected macrophages but not in cells from CASP-1,11-/- mice, suggesting that caspase-1 activation by UTP triggers IL-1ß secretion in L. amazonensis-infected macrophages. Infected cells pretreated with IL-1R antagonist did not show reduced parasitic load after UTP and ATP treatment. Our in vivo experiments also showed that intralesional UTP treatment reduced both parasite load (in the footpads and popliteal lymph nodes) and lesion size in wild-type (WT) and CASP-11-/- but not in CASP-1,11-/- mice. Taken together, our findings suggest that P2Y2R activation induces CASP-1 activation and IL-1ß secretion during L. amazonensis infection. IL-1ß/IL-1R signaling is crucial for P2Y2R-mediated protective immune response in an experimental model of cutaneous leishmaniasis.


Assuntos
Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/genética , Feminino , Humanos , Interleucina-1beta/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Transdução de Sinais/efeitos dos fármacos , Uridina Trifosfato/farmacologia
17.
PLoS Pathog ; 13(8): e1006595, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859168

RESUMO

A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP) accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1) cell differentiation to the detriment of follicular T helper (Tfh) cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome.


Assuntos
Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Malária/imunologia , Receptores Purinérgicos P2X7/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Eritrócitos/parasitologia , Feminino , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium chabaudi/imunologia
19.
Mediators Inflamm ; 2019: 7241312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341421

RESUMO

Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are Gram-negative anaerobic bacteria possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to tooth loss and is considered one of the most prevalent diseases worldwide. P. gingivalis and F. nucleatum possess virulence factors that allow them to survive in hostile environments by selectively modulating the host's immune-inflammatory response, thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1ß and caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1ß release. The exact molecular events of the host's response to these bacteria are not fully understood. Here, we review innate and adaptive immune responses induced by P. gingivalis and F. nucleatum infections and discuss the possibility of manipulations of the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic targets for the prophylaxis of periodontopathogen infections.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/patogenicidade , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/patogenicidade , Imunidade Adaptativa , Animais , Infecções por Bacteroidaceae/terapia , Caspase 1/metabolismo , Sobrevivência Celular , Infecções por Fusobacterium/imunologia , Infecções por Fusobacterium/terapia , Humanos , Imunidade Inata , Inflamassomos , Inflamação , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Periodontais/imunologia , Doenças Periodontais/terapia , Virulência
20.
Purinergic Signal ; 14(2): 201-211, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29680937

RESUMO

Leishmania amazonensis is the etiologic agent of cutaneous leishmaniasis, an immune-driven disease causing a range of clinical symptoms. Infections caused by L. amazonensis suppress the activation and function of immune cells, including macrophages, dendritic cells, and CD4+ T cells. In this study, we analyzed the course of infection as well as the leishmanicidal effect of intralesional UTP treatment in L. amazonensis-infected BALB/c mice. We found that UTP treatment reduced the parasitic load in both footpad and lymph node sites of infection. UTP also boosted Th1 immune responses, increasing CD4+ T cell recruitment and production of IFN-γ, IL-1ß, IL-12, and TNF-α. In addition, the role of UTP during innate immune response against L. amazonensis was evaluated using the air pouch model. We observed that UTP augmented neutrophil chemoattraction and activated microbicidal mechanisms, including ROS production. In conclusion, our data suggested an important role for this physiological nucleotide in controlling L. amazonensis infection, and its possible use as a therapeutic agent for shifting immune responses to Th1 and increasing host resistance against L. amazonensis infection.


Assuntos
Leishmaniose Cutânea/imunologia , Espécies Reativas de Oxigênio , Células Th1/efeitos dos fármacos , Uridina Trifosfato/farmacologia , Animais , Feminino , Leishmania mexicana , Camundongos , Camundongos Endogâmicos BALB C , Células Th1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA