Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
Trends Genet ; 37(12): 1124-1136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34531040

RESUMO

Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Produtos Agrícolas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Humanos , Fenótipo , Melhoramento Vegetal/métodos
3.
Genome ; 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412080

RESUMO

Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.

4.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063244

RESUMO

Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.


Assuntos
Arabidopsis , Brassica napus , Cádmio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Espécies Reativas de Oxigênio , Tolerância ao Sal , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Theor Appl Genet ; 134(10): 3411-3426, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34258645

RESUMO

KEY MESSAGE: A plant-specific Trimethylguanosine Synthase1-like homologue was identified as a candidate gene for the efl mutation in narrow-leafed lupin, which alters phenology by reducing vernalisation requirement. The vernalisation pathway is a key component of flowering time control in plants from temperate regions but is not well understood in the legume family. Here we examined vernalisation control in the temperate grain legume species, narrow-leafed lupin (Lupinus angustifolius L.), and discovered a candidate gene for an ethylene imine mutation (efl). The efl mutation changes phenology from late to mid-season flowering and additionally causes transformation from obligate to facultative vernalisation requirement. The efl locus was mapped to pseudochromosome NLL-10 in a recombinant inbred line (RIL) mapping population developed by accelerated single seed descent. Candidate genes were identified in the reference genome, and a diverse panel of narrow-leafed lupins was screened to validate mutations specific to accessions with efl. A non-synonymous SNP mutation within an S-adenosyl-L-methionine-dependent methyltransferase protein domain of a Trimethylguanosine Synthase1-like (TGS1) orthologue was identified as the candidate mutation giving rise to efl. This mutation caused substitution of an amino acid within an established motif at a position that is otherwise highly conserved in several plant families and was perfectly correlated with the efl phenotype in F2 and F6 genetic population and a panel of diverse accessions, including the original efl mutant. Expression of the TGS1 homologue did not differ between wild-type and efl genotypes, supporting altered functional activity of the gene product. This is the first time a TGS1 orthologue has been associated with vernalisation response and flowering time control in any plant species.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genética Populacional , Lupinus/crescimento & desenvolvimento , Metiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Flores/genética , Lupinus/genética , Metiltransferases/genética , Mutação , Fenótipo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética
7.
Plant Cell Environ ; 42(1): 174-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677403

RESUMO

Narrow-leafed lupin (Lupinus angustifolius L.) cultivation was transformed by 2 dominant vernalization-insensitive, early flowering time loci known as Ku and Julius (Jul), which allowed expansion into shorter season environments. However, reliance on these loci has limited genetic and phenotypic diversity for environmental adaptation in cultivated lupin. We recently predicted that a 1,423-bp deletion in the cis-regulatory region of LanFTc1, a FLOWERING LOCUS T (FT) homologue, derepressed expression of LanFTc1 and was the underlying cause of the Ku phenotype. Here, we surveyed diverse germplasm for LanFTc1 cis-regulatory variation and identified 2 further deletions of 1,208 and 5,162 bp in the 5' regulatory region, which overlap the 1,423-bp deletion. Additionally, we confirmed that no other polymorphisms were perfectly associated with vernalization responsiveness. Phenotyping and gene expression analyses revealed that Jul accessions possessed the 5,162-bp deletion and that the Jul and Ku deletions were equally capable of removing vernalization requirement and up-regulating gene expression. The 1,208-bp deletion was associated with intermediate phenology, vernalization responsiveness, and gene expression and therefore may be useful for expanding agronomic adaptation of lupin. This insertion/deletion series may also help resolve how the vernalization response is mediated at the molecular level in legumes.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Mutação INDEL/genética , Lupinus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Variação Genética/genética , Mutação INDEL/fisiologia , Desequilíbrio de Ligação/genética , Lupinus/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Estações do Ano
8.
New Phytol ; 213(1): 220-232, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27418400

RESUMO

Adaptation of Lupinus angustifolius (narrow-leafed lupin) to cropping in southern Australian and northern Europe was transformed by a dominant mutation (Ku) that removed vernalization requirement for flowering. The Ku mutation is now widely used in lupin breeding to confer early flowering and maturity. We report here the identity of the Ku mutation. We used a range of genetic, genomic and gene expression approaches to determine whether Flowering Locus T (FT) homologues are associated with the Ku locus. One of four FT homologues present in the narrow-leafed lupin genome, LanFTc1, perfectly co-segregated with the Ku locus in a reference mapping population. Expression of LanFTc1 in the ku (late-flowering) parent was strongly induced by vernalization, in contrast to the Ku (early-flowering) parent, which showed constitutively high LanFTc1 expression. Co-segregation of this expression phenotype with the LanFTc1 genotype indicated that the Ku mutation impairs cis-regulation of LanFTc1. Sequencing of LanFTc1 revealed a 1.4-kb deletion in the promoter region, which was perfectly predictive of vernalization response in 216 wild and domesticated accessions. Linkage disequilibrium rapidly decayed around LanFTc1, suggesting that this deletion caused the loss of vernalization response. This is the first time a legume FTc subclade gene has been implicated in the vernalization response.


Assuntos
Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Lupinus/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Sítios de Ligação , Genes de Plantas , Marcadores Genéticos , Mutação INDEL/genética , Desequilíbrio de Ligação/genética , Lupinus/genética , Motivos de Nucleotídeos/genética , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
9.
Plant Mol Biol Report ; 35(4): 416-430, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751801

RESUMO

Production of oilseed rape/canola (Brassica napus) is increasingly threatened by dry conditions while the demand for vegetable oil is increasing. Brassica rapa is a genetically diverse ancestor of B. napus, and is readily crossed with B. napus. Recently, we reported promising levels of drought tolerance in a wild type of B. rapa which could be a source of drought tolerance for B. napus. We analysed global gene expression by messenger RNA sequencing in seedlings of the drought-tolerant and a drought-sensitive genotype of B. rapa under simulated drought stress and control conditions. A subset of stress-response genes were validated by reverse transcription quantitative PCR. Gene ontology enrichment analysis and pathway enrichment analysis revealed major differences between the two genotypes in the mode and onset of stress responses in the first 12 h of treatment. Drought-tolerant plants reacted uniquely and rapidly by upregulating genes associated with jasmonic acid and salicylic acid metabolism, as well as genes known to cause endoplasmic reticulum stress and induction of programmed cell death. Conversely, active responses in drought-sensitive plants were delayed until 8 or 12 h after stress application. The results may help to identify biomarkers for selection of breeding materials with potentially improved drought tolerance.

10.
BMC Plant Biol ; 15: 173, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152188

RESUMO

BACKGROUND: Development of synthetic allohexaploid Brassica (2n = AABBCC) would be beneficial for agriculture, as allelic contributions from three genomes could increase hybrid vigour and broaden adaptation. Microspore culture of a near-allohexaploid hybrid derived from the cross (B. napus × B. carinata) × B. juncea was undertaken in order to assess the frequency and distribution of homologous and homoeologous crossovers in this trigenomic hybrid. SNP and SSR molecular markers were used to detect inheritance of A, B and C genome alleles in microspore-derived (MD) progeny. SNP allele copy number was also assessed. The MD progeny were also compared to progeny derived by self-pollination and open-pollination for fertility (estimated by self-pollinated seed set and pollen viability) and DNA ploidy (measured by flow cytometry). RESULTS: In the trigenomic hybrid, homologous chromosome pairs A(j)-A(n), B(j)-B(c) and C(n)-C(c) had similar meiotic crossover frequencies and segregation to that previously observed in established Brassica species, as demonstrated by marker haplotype analysis of the MD population. Homoeologous pairing between chromosomes A1-C1, A2-C2 and A7-C6 was detected at frequencies of 12-18 %, with other homoeologous chromosome regions associating from 8 % (A3-C3) to 0-1 % (A8-C8, A8-C9) of the time. Copy number analysis revealed eight instances of additional chromosomes and 20 instances of chromosomes present in one copy in somatically doubled MD progeny. Presence of chromosome A6 was positively correlated with self-pollinated seed set and pollen viability in the MD population. Many MD progeny were unable to produce self-pollinated seed (76 %) or viable pollen (53 %), although one MD plant produced 198 self-pollinated seeds. Average fertility was significantly lower in progeny obtained by microspore culture than progeny obtained by self-pollination or open-pollination, after excluding MD progeny which had not undergone chromosome doubling. CONCLUSIONS: Based on SNP data analysis of the microspore-derived progeny, crossover frequency per chromosome in the allohexaploid hybrid was found to be similar to that in established Brassica species, suggesting that the higher chromosome number did not significantly disrupt cellular regulation of meiosis. SNP allele copy number analysis revealed the occurrence not only of homoeologous duplication/deletion events but also other cryptic duplications and deletions that may have been the result of mitotic instability. Microspore culture simplified the assessment of chromosome behaviour in the allohexaploid hybrid but yielded progeny with lower fertility and a greater range of ploidy levels compared to progeny obtained by self- or open-pollination.


Assuntos
Brassica/genética , Troca Genética , Hibridização Genética , Meiose , Ploidias
11.
New Phytol ; 202(3): 964-974, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24471809

RESUMO

How do chromosomal regions with differing degrees of homology and homeology interact at meiosis? We provide a novel analytical method based on simple genetics principles which can help to answer this important question. This method interrogates high-throughput molecular marker data in order to infer chromosome behavior at meiosis in interspecific hybrids. We validated this method using high-resolution molecular marker karyotyping in two experimental Brassica populations derived from interspecific crosses among B. juncea, B. napus and B. carinata, using a single nucleotide polymorphism chip. This method of analysis successfully identified meiotic interactions between chromosomes sharing different degrees of similarity: full-length homologs; full-length homeologs; large sections of primary homeologs; and small sections of secondary homeologs. This analytical method can be applied to any allopolyploid species or fertile interspecific hybrid in order to detect meiotic associations. This genetic information can then be used to identify which genomic regions share functional homeology (i.e., retain enough similarity to allow pairing and segregation at meiosis). When applied to interspecific hybrids for which reference genome sequences are available, the question of how differing degrees of homology and homeology affect meiotic interactions may finally be resolved.


Assuntos
Brassica/genética , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Cariotipagem/métodos , Filogenia , Alelos , Quebra Cromossômica , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Rearranjo Gênico/genética , Marcadores Genéticos , Genoma de Planta/genética , Hibridização Genética , Padrões de Herança/genética , Recombinação Genética/genética , Especificidade da Espécie
12.
J Hered ; 105(4): 555-565, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714366

RESUMO

Brassica rapa is the most widely distributed and has the longest history of domestication of the agricultural Brassica species. Molecular genetic diversity, based on 51 simple sequence repeat primer pairs and 715 alleles at polymorphic loci, was used to predict the center of origin and centers of diversity in a global collection of 173 B. rapa accessions. The accessions were separated into 3 molecular genetic groups based on STRUCTURE analysis-group 1 from the classical Old World (Europe and west Asia-north Africa), group 2 from east Asia, and group 3 from east, central, south, and southeast Asia. Accessions classified as "wild" (B. rapa var. sylvestris) were found only in group 1 and this group had the highest number and richness of private alleles. Each group included a diverse range of agricultural morphotypes (oilseed, root, or leafy vegetable types), flowering habit (winter, semi-winter, or spring type), self-compatibility or incompatibility, and seed color. The Old World and east, south, and central Asia were distinct subpopulations based on analysis of shared unique alleles. This study supports the theory that the classical Old World is the center of origin of B. rapa, with centers of diversity in east Asia and along ancient trade routes in Asia, with recent migration to the New World.


Assuntos
Brassica rapa/genética , Variação Genética , Genética Populacional , Alelos , Ásia , DNA de Plantas/genética , Europa (Continente) , Repetições de Microssatélites
13.
BMC Genomics ; 14: 277, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23617817

RESUMO

BACKGROUND: Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive molecular breeding, and map-based gene cloning. This report describes the construction of the first B. napus consensus map consisting of a 1,359 anchored array based genotyping platform; Diversity Arrays Technology (DArT), and non-DArT markers from six populations originating from Australia, Canada, China and Europe. We aligned the B. napus DArT sequences with genomic scaffolds from Brassica rapa and Brassica oleracea, and identified DArT loci that showed linkage with qualitative and quantitative loci associated with agronomic traits. RESULTS: The integrated consensus map covered a total of 1,987.2 cM and represented all 19 chromosomes of the A and C genomes, with an average map density of one marker per 1.46 cM, corresponding to approximately 0.88 Mbp of the haploid genome. Through in silico physical mapping 2,457 out of 3,072 (80%) DArT clones were assigned to the genomic scaffolds of B. rapa (A genome) and B. oleracea (C genome). These were used to orientate the genetic consensus map with the chromosomal sequences. The DArT markers showed linkage with previously identified non-DArT markers associated with qualitative and quantitative trait loci for plant architecture, phenological components, seed and oil quality attributes, boron efficiency, sucrose transport, male sterility, and race-specific resistance to blackleg disease. CONCLUSIONS: The DArT markers provide increased marker density across the B. napus genome. Most of the DArT markers represented on the current array were sequenced and aligned with the B. rapa and B. oleracea genomes, providing insight into the Brassica A and C genomes. This information can be utilised for comparative genomics and genomic evolution studies. In summary, this consensus map can be used to (i) integrate new generation markers such as SNP arrays and next generation sequencing data; (ii) anchor physical maps to facilitate assembly of B. napus genome sequences; and (iii) identify candidate genes underlying natural genetic variation for traits of interest.


Assuntos
Brassica napus/genética , Mapeamento Cromossômico/métodos , Técnicas de Genotipagem/métodos , Agricultura , Consenso , Ligação Genética , Variação Genética , Genoma de Planta , Locos de Características Quantitativas
14.
J Hered ; 104(3): 416-27, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519868

RESUMO

The oilseed Brassica juncea is an important crop with a long history of cultivation in India and China. Previous studies have suggested a polyphyletic origin of B. juncea and more than one migration from the primary to secondary centers of diversity. We investigated molecular genetic diversity based on 99 simple sequence repeat markers in 119 oilseed B. juncea varieties from China, India, Europe, and Australia to test whether molecular differentiation follows Vavilov's proposal of secondary centers of diversity in India and China. Two distinct groups were identified by markers in the A genome, and the same two groups were confirmed by markers in the B genome. Group 1 included accessions from central and western India, in addition to those from eastern China. Group 2 included accessions from central and western China, as well as those from northern and eastern India. European and Australian accessions were found only in Group 2. Chinese accessions had higher allelic diversity per accession (Group 1) and more private alleles per accession (Groups 1 and 2) than those from India. The marker data and geographic distribution of Groups 1 and 2 were consistent with two independent migrations of B. juncea from its center of origin in the Middle East and neighboring regions along trade routes to western China and northern India, followed by regional adaptation. Group 1 migrated further south and west in India, and further east in China, than Group 2. Group 2 showed diverse agroecological adaptation, with yellow-seeded spring-sown types in central and western China and brown-seeded autumn-sown types in India.


Assuntos
Variação Genética , Repetições de Microssatélites , Mostardeira/genética , Evolução Biológica , China , Análise por Conglomerados , Genoma de Planta , Índia , Filogenia
15.
Heliyon ; 9(9): e19237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674843

RESUMO

Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.

16.
Plants (Basel) ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679096

RESUMO

Crop breeding must achieve higher rates of genetic gain in grain yield (GY) and yield stability to meet future food demands in a changing climate. Optimal contributions selection (OCS) based on an index of key economic traits should increase the rate of genetic gain while minimising population inbreeding. Here we apply OCS in a global spring oilseed rape (canola) breeding program during three cycles of S0,1 family selection in 2016, 2018, and 2020, with several field trials per cycle in Australia and Canada. Economic weights in the index promoted high GY, seed oil, protein in meal, and Phoma stem canker (blackleg) disease resistance while maintaining plant height, flowering time, oleic acid, and seed size and decreasing glucosinolate content. After factor analytic modelling of the genotype-by-environment interaction for the additive effects, the linear rate of genetic gain in GY across cycles was 0.059 or 0.087 t ha-1 y-1 (2.9% or 4.3% y-1) based on genotype scores for the first factor (f1) expressed in trait units or average predicted breeding values across environments, respectively. Both GY and yield stability, defined as the root-mean-square deviation from the regression line associated with f1, were predicted to improve in the next cycle with a low achieved mean parental coancestry (0.087). These methods achieved rapid genetic gain in GY and other traits and are predicted to improve yield stability across global spring canola environments.

17.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903999

RESUMO

Accuracy of predicted breeding values (PBV) for low heritability traits may be increased in early generations by exploiting the information available in correlated traits. We compared the accuracy of PBV for 10 correlated traits with low to medium narrow-sense heritability (h2) in a genetically diverse field pea (Pisum sativum L.) population after univariate or multivariate linear mixed model (MLMM) analysis with pedigree information. In the contra-season, we crossed and selfed S1 parent plants, and in the main season we evaluated spaced plants of S0 cross progeny and S2+ (S2 or higher) self progeny of parent plants for the 10 traits. Stem strength traits included stem buckling (SB) (h2 = 0.05), compressed stem thickness (CST) (h2 = 0.12), internode length (IL) (h2 = 0.61) and angle of the main stem above horizontal at first flower (EAngle) (h2 = 0.46). Significant genetic correlations of the additive effects occurred between SB and CST (0.61), IL and EAngle (-0.90) and IL and CST (-0.36). The average accuracy of PBVs in S0 progeny increased from 0.799 to 0.841 and in S2+ progeny increased from 0.835 to 0.875 in univariate vs MLMM, respectively. An optimized mating design was constructed with optimal contribution selection based on an index of PBV for the 10 traits, and predicted genetic gain in the next cycle ranged from 1.4% (SB), 5.0% (CST), 10.5% (EAngle) and -10.5% (IL), with low achieved parental coancestry of 0.12. MLMM improved the potential genetic gain in annual cycles of early generation selection in field pea by increasing the accuracy of PBV.

18.
Curr Biol ; 33(23): R1246-R1261, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052178

RESUMO

Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.


Assuntos
Mudança Climática , Produtos Agrícolas , Melhoramento Vegetal , Agricultura , Produção Agrícola
19.
Genes (Basel) ; 13(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35205341

RESUMO

Heat stress events during flowering in Brassica crops reduce grain yield and are expected to increase in frequency due to global climate change. We evaluated heat stress tolerance and molecular genetic diversity in a global collection of Brassica rapa accessions, including leafy, rooty and oilseed morphotypes with spring, winter and semi-winter flowering phenology. Tolerance to transient daily heat stress during the early reproductive stage was assessed on 142 lines in a controlled environment. Well-watered plants of each genotype were exposed to the control (25/15 °C day/night temperatures) or heat stress (35/25 °C) treatments for 7 d from the first open flower on the main stem. Bud and leaf temperature depression, leaf conductance and chlorophyll content index were recorded during the temperature treatments. A large genetic variation for heat tolerance and sensitivity was found for above-ground biomass, whole plant seed yield and harvest index and seed yield of five pods on the main stem at maturity. Genetic diversity was assessed on 212 lines with 1602 polymorphic SNP markers with a known location in the B. rapa physical map. Phylogenetic analyses confirmed two major genetic populations: one from East and South Asia and one from Europe. Heat stress-tolerant lines were distributed across diverse geographic origins, morphotypes (leafy, rooty and oilseed) and flowering phenologies (spring, winter and semi-winter types). A genome-wide association analysis of heat stress-related yield traits revealed 57 SNPs distributed across all 10 B. rapa chromosomes, some of which were associated with potential candidate genes for heat stress tolerance.


Assuntos
Brassica rapa , Termotolerância , Brassica rapa/genética , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Filogenia , Locos de Características Quantitativas , Termotolerância/genética
20.
BMC Plant Biol ; 11: 103, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21663695

RESUMO

BACKGROUND: Unreduced gametes (gametes with the somatic chromosome number) may provide a pathway for evolutionary speciation via allopolyploid formation. We evaluated the effect of genotype and temperature on male unreduced gamete formation in Brassica allotetraploids and their interspecific hybrids. The frequency of unreduced gametes post-meiosis was estimated in sporads from the frequency of dyads or giant tetrads, and in pollen from the frequency of viable giant pollen compared with viable normal pollen. Giant tetrads were twice the volume of normal tetrads, and presumably resulted from pre-meiotic doubling of chromosome number. Giant pollen was defined as pollen with more than 1.5 × normal diameter, under the assumption that the doubling of DNA content in unreduced gametes would approximately double the pollen cell volume. The effect of genotype was assessed in five B. napus, two B. carinata and one B. juncea parents and in 13 interspecific hybrid combinations. The effect of temperature was assessed in a subset of genotypes in hot (day/night 30°C/20°C), warm (25°C/15°C), cool (18°C/13°C) and cold (10°C/5°C) treatments. RESULTS: Based on estimates at the sporad stage, some interspecific hybrid genotypes produced unreduced gametes (range 0.06 to 3.29%) at more than an order of magnitude higher frequency than in the parents (range 0.00% to 0.11%). In nine hybrids that produced viable mature pollen, the frequency of viable giant pollen (range 0.2% to 33.5%) was much greater than in the parents (range 0.0% to 0.4%). Giant pollen, most likely formed from unreduced gametes, was more viable than normal pollen in hybrids. Two B. napus × B. carinata hybrids produced 9% and 23% unreduced gametes based on post-meiotic sporad observations in the cold temperature treatment, which was more than two orders of magnitude higher than in the parents. CONCLUSIONS: These results demonstrate that sources of unreduced gametes, required for the triploid bridge hypothesis of allopolyploid evolution, are readily available in some Brassica interspecific hybrid genotypes, especially at cold temperatures.


Assuntos
Brassica/genética , Quimera/genética , Temperatura Baixa , Evolução Molecular , Pólen/citologia , Alelos , Brassica/citologia , Brassica/crescimento & desenvolvimento , Sobrevivência Celular , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Genótipo , Hibridização Genética , Meiose , Pólen/genética , Pólen/crescimento & desenvolvimento , Poliploidia , Sementes/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA