Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23326, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019196

RESUMO

The identification and recombinant production of functional antigens and/or epitopes of pathogens represent a crucial step for the development of an effective protein-based vaccine. Many vaccine targets are outer membrane proteins anchored into the lipidic bilayer through an extended hydrophobic portion making their recombinant production challenging. Moreover, only the extracellular loops, and not the hydrophobic regions, are naturally exposed to the immune system. In this work, the Domain 3 (D3) from Group B Streptococcus (GBS) pilus 2a backbone protein has been identified and engineered to be used as a scaffold for the display of extracellular loops of two Neisseria gonorrhoeae membrane proteins (PorB.1b and OpaB). A computational structure-based approach has been applied to the design of both the scaffold and the model antigens. Once identified the best D3 engineerable site, several different chimeric D3 displaying PorB.1b and OpaB extracellular loops were produced as soluble proteins. Each molecule has been characterized in terms of solubility, stability, and ability to correctly display the foreign epitope. This antigen dissection strategy allowed the identification of most immunogenic extracellular loops of both PorB.1b and OpaB gonococcal antigens. The crystal structure of chimeric D3 displaying PorB.1b immunodominant loop has been obtained confirming that the engineerization did not alter the predicted native structure of this epitope. Taken together, the reported data suggest that D3 is a novel protein scaffold for epitope insertion and display, and a valid alternative to the production of whole membrane protein antigens. Finally, this work describes a generalized computational structure-based approach for the identification, design, and dissection of epitopes in target antigens through chimeric proteins.


Assuntos
Proteínas de Membrana , Vacinas , Epitopos/genética , Antígenos de Bactérias/genética , Bicamadas Lipídicas
2.
PLoS Pathog ; 16(10): e1008882, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007046

RESUMO

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.


Assuntos
Anticorpos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Meningite Meningocócica/imunologia , Vacinas Meningocócicas/administração & dosagem , Neisseria meningitidis/imunologia , Adulto , Anticorpos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Humanos , Meningite Meningocócica/metabolismo , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle
3.
FASEB J ; 33(11): 12099-12111, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442074

RESUMO

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Epitopos/imunologia , Vacinas Meningocócicas/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Cristalografia por Raios X , Epitopos/genética , Epitopos/metabolismo , Variação Genética , Humanos , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/administração & dosagem , Modelos Moleculares , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/imunologia , Neisseria meningitidis/fisiologia , Ligação Proteica , Conformação Proteica
4.
Mol Cell Proteomics ; 14(2): 418-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25368410

RESUMO

New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called "Protectome space," and using such "protective signatures" for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.


Assuntos
Vacinas Bacterianas/imunologia , Biologia Computacional/métodos , Proteoma/imunologia , 5'-Nucleotidase/metabolismo , Animais , Proteínas de Bactérias/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Camundongos , Neisseria meningitidis Sorogrupo B/imunologia , Sinais Direcionadores de Proteínas , Reprodutibilidade dos Testes , Staphylococcus aureus/imunologia , Streptococcus agalactiae/imunologia
5.
FASEB J ; 29(11): 4629-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26202865

RESUMO

Group B Streptococcus (GBS) expresses 3 structurally distinct pilus types (1, 2a, and 2b) identified as important virulence factors and vaccine targets. These pili are heterotrimeric polymers, covalently assembled on the cell wall by sortase (Srt) enzymes. We investigated the pilus-2b biogenesis mechanism by using a multidisciplinary approach integrating genetic, biochemical, and structural studies to dissect the role of the 2 pilus-2b-associated Srts. We show that only 1 sortase (SrtC1-2b) is responsible for pilus protein polymerization, whereas the second one (Srt2-2b) does not act as a pilin polymerase, but similarly to the housekeeping class A Srt (SrtA), it is involved in cell-wall pilus anchoring by targeting the minor ancillary subunit. Based on its function and sequence features, Srt2-2b does not belong to class C Srts (SrtCs), nor is it a canonical member of any other known family of Srts. We also report the crystal structure of SrtC1-2b at 1.9 Å resolution. The overall fold resembles the typical structure of SrtCs except for the N-terminal lid region that appears in an open conformation displaced from the active site. Our findings reveal that GBS pilus type 2b biogenesis differs significantly from the current model of pilus assembly in gram-positive pathogens.


Assuntos
Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Fímbrias Bacterianas/enzimologia , Streptococcus agalactiae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/genética , Estrutura Terciária de Proteína , Streptococcus agalactiae/genética
6.
FASEB J ; 27(8): 3144-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23631841

RESUMO

Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date, and their mechanisms of transpeptidation and regulation need to be further investigated. The available 3-dimensional structures of these enzymes reveal a typical sortase fold, except for the presence of a unique feature represented by an N-terminal highly flexible loop known as the "lid." This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an autoinhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work, we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/enzimologia , Streptococcus agalactiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Western Blotting , Domínio Catalítico , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fluorometria , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Filogenia , Polimerização , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteólise , Streptococcus agalactiae/genética
7.
PLoS Comput Biol ; 9(6): e1003115, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825940

RESUMO

The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus agalactiae/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Mapeamento de Epitopos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fagocitose , Homologia de Sequência de Aminoácidos , Streptococcus agalactiae/imunologia
8.
Proc Natl Acad Sci U S A ; 108(25): 10278-83, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21593422

RESUMO

Structural vaccinology is an emerging strategy for the rational design of vaccine candidates. We successfully applied structural vaccinology to design a fully synthetic protein with multivalent protection activity. In Group B Streptococcus, cell-surface pili have aroused great interest because of their direct roles in virulence and importance as protective antigens. The backbone subunit of type 2a pilus (BP-2a) is present in six immunogenically different but structurally similar variants. We determined the 3D structure of one of the variants, and experimentally demonstrated that protective antibodies specifically recognize one of the four domains that comprise the protein. We therefore constructed a synthetic protein constituted by the protective domain of each one of the six variants and showed that the chimeric protein protects mice against the challenge with all of the type 2a pilus-carrying strains. This work demonstrates the power of structural vaccinology and will facilitate the development of an optimized, broadly protective pilus-based vaccine against Group B Streptococcus by combining the uniquely generated chimeric protein with protective pilin subunits from two other previously identified pilus types. In addition, this work describes a template procedure that can be followed to develop vaccines against other bacterial pathogens.


Assuntos
Vacinas Bacterianas/síntese química , Proteínas de Fímbrias/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/síntese química , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae/imunologia , Animais , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Cristalografia por Raios X , Feminino , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/química , Fímbrias Bacterianas/imunologia , Camundongos , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Infecções Estreptocócicas/imunologia
9.
FASEB Bioadv ; 6(8): 235-248, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114449

RESUMO

Thousands of disease cases and hundreds of deaths occur globally each year due to invasive meningococcal disease. Neisseria meningitidis serogroup B (MenB) is the leading cause of such disease in developed countries. Two vaccines, 4CMenB and MenB-fHbp, that protect against MenB are available and include one or two forms respectively of factor H binding protein (fHbp), a key protective antigen. Studies of circulating meningococci have identified over 1380 different fHbp amino acid sequences, which form three immunologically distinct clusters, termed variants 1, 2, and 3. Neither of the current vaccines contains a variant 2 antigen, which is less well characterized than fHbp variants 1 and 3. We characterized the interaction of fHbp variant 2 with humAb 1B1 using biochemical methods and live meningococcal assays. Further, we determined the crystal structure of the complex at 2.4 Å resolution, clearly revealing the epitope and providing the first detailed report of an antibody with distinct specificity for fHbp variant 2. Extensive mutagenesis and binding studies elucidated key hotspots in the interface. This combination of structural and functional studies provides a molecular explanation for the bactericidal potency and specificity of humAb 1B1 for fHbp variant 2. Our studies, focused on fHbp variant 2, expand the understanding of this previously under characterized group of the vast family of variants of fHbp, a virulence factor present on all meningococci. Moreover, the definition of a protective conformational epitope on fHbp variant 2 may support the design and development of novel variant 2-containing MenB vaccines affording greater breadth of protection.

10.
FASEB J ; 26(5): 2008-18, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22253480

RESUMO

Group B Streptococcus pili are covalently linked structures assembled via a sortase-catalyzed transpeptidation mechanism involving specific residues and motifs. A sequence element containing a conserved glutamic acid, called the E-box, has been described to be involved in pilus formation. Although it is known that the glutamic acid is involved in stabilizing the internal isopeptide bonds, its role in pilus assembly still needs to be investigated. Using site-specific mutagenesis and complementation studies of knockout strains, we found that the E-box glutamic residue of the backbone and the major ancillary proteins is essential for pilus protein polymerization. NMR analysis revealed that the mutation of this residue seriously affected the folding of the protein. By contrast, the mutation of the lysine involved in the same isopeptide bond did not engender a structural destabilization, and the native fold was preserved. Moreover, molecular dynamics simulations on the E-box-containing domain of the backbone protein showed that the E-box glutamic acid is necessary to maintain the appropriate dryness of the domain core and that its mutation favors an unfolded state. The data provide the first direct evidence that the E-box has an additional and key role in maintaining the correct protein fold independently of isopeptide bond formation.


Assuntos
Fímbrias Bacterianas/fisiologia , Ácido Glutâmico/fisiologia , Streptococcus agalactiae/fisiologia , Western Blotting , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular
11.
NPJ Vaccines ; 8(1): 152, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803013

RESUMO

A maternal vaccine to protect neonates against Group B Streptococcus invasive infection is an unmet medical need. Such a vaccine should ideally be offered during the third trimester of pregnancy and induce strong immune responses after a single dose to maximize the time for placental transfer of protective antibodies. A key target antigen is the capsular polysaccharide, an anti-phagocytic virulence factor that elicits protective antibodies when conjugated to carrier proteins. The most prevalent polysaccharide serotypes conjugated to tetanus or diphtheria toxoids have been tested in humans as monovalent and multivalent formulations, showing excellent safety profiles and immunogenicity. However, responses were suboptimal in unprimed individuals after a single shot, the ideal schedule for vaccination during the third trimester of pregnancy. In the present study, we obtained and optimized self-assembling virus-like particles conjugated to Group B Streptococcus capsular polysaccharides. The resulting glyco-nanoparticles elicited strong immune responses in mice already after one immunization, providing pre-clinical proof of concept for a single-dose vaccine.

12.
FASEB J ; 25(6): 1874-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21357525

RESUMO

In group B Streptococcus (GBS), 3 structurally distinct types of pili have been discovered as potential virulence factors and vaccine candidates. The pilus-forming proteins are assembled into high-molecular-weight polymers via a transpeptidation mechanism mediated by specific class C sortases. Using a multidisciplinary approach including bioinformatics, structural and biochemical studies, and in vivo mutagenesis, we performed a broad characterization of GBS sortase C1 of pilus island 2a. The high-resolution X-ray structure of the enzyme revealed that the active site, into the ß-barrel core of the enzyme, is made of the catalytic triad His157-Cys219-Arg228 and covered by a loop, known as the "lid." We show that the catalytic triad and the predicted N- and C-terminal transmembrane regions are required for the enzyme activity. Interestingly, by in vivo complementation mutagenesis studies, we found that the deletion of the entire lid loop or mutations in specific lid key residues had no effect on catalytic activity of the enzyme. In addition, kinetic characterizations of recombinant enzymes indicate that the lid mutants can still recognize and cleave the substrate-mimicking peptide at least as well as the wild-type protein.


Assuntos
Aminoaciltransferases/química , Aminoaciltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Fímbrias Bacterianas/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus agalactiae/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Plasmídeos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Streptococcus agalactiae/genética
13.
Proc Natl Acad Sci U S A ; 106(41): 17481-6, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805031

RESUMO

Group B Streptococcus (GBS) causes serious infection in neonates and is an important target of vaccine development. Zwitterionic polysaccharides (ZPS), obtained through chemical introduction of positive charges into anionic polysaccharides (PS) from GBS, have the ability to activate human and mouse antigen presenting cells (APCs) through toll-like receptor 2 (TLR2). To generate a polysaccharide vaccine with antigen (Ag) and adjuvant properties in one molecule, we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T-cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. The increased immunogenicity of ZPS-conjugates correlates with their ability to activate dendritic cells (DCs). Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are coadministered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T-cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent PS-adjuvants with wide application, including glycoconjugates and coadministration with unrelated protein Ags.


Assuntos
Polissacarídeos/química , Receptor 2 Toll-Like/imunologia , Vacinas Conjugadas/química , Animais , Vacinas Bacterianas/uso terapêutico , Humanos , Recém-Nascido , Camundongos , Polissacarídeos/imunologia , Infecções Estreptocócicas/imunologia
14.
PLoS One ; 17(9): e0273322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112575

RESUMO

Recombinant protein-based vaccines are a valid and safer alternative to traditional vaccines based on live-attenuated or killed pathogens. However, the immune response of subunit vaccines is generally lower compared to that elicited by traditional vaccines and usually requires the use of adjuvants. The use of self-assembling protein nanoparticles, as a platform for vaccine antigen presentation, is emerging as a promising approach to enhance the production of protective and functional antibodies. In this work we demonstrated the successful repetitive antigen display of the C-terminal ß-barrel domain of factor H binding protein, derived from serogroup B Meningococcus on the surface of different self-assembling nanoparticles using genetic fusion. Six nanoparticle scaffolds were tested, including virus-like particles with different sizes, geometries, and physicochemical properties. Combining computational and structure-based rational design we were able generate antigen-fused scaffolds that closely aligned with three-dimensional structure predictions. The chimeric nanoparticles were produced as recombinant proteins in Escherichia coli and evaluated for solubility, stability, self-assembly, and antigen accessibility using a variety of biophysical methods. Several scaffolds were identified as being suitable for genetic fusion with the ß-barrel from fHbp, including ferritin, a de novo designed aldolase from Thermotoga maritima, encapsulin, CP3 phage coat protein, and the Hepatitis B core antigen. In conclusion, a systematic screening of self-assembling nanoparticles has been applied for the repetitive surface display of a vaccine antigen. This work demonstrates the capacity of rational structure-based design to develop new chimeric nanoparticles and describes a strategy that can be utilized to discover new nanoparticle-based approaches in the search for vaccines against bacterial pathogens.


Assuntos
Vacinas Meningocócicas , Nanopartículas , Neisseria meningitidis , Aldeído Liases , Antígenos , Vacinas Bacterianas , Proteínas de Transporte , Fator H do Complemento , Ferritinas , Antígenos do Núcleo do Vírus da Hepatite B , Nanopartículas/química , Neisseria meningitidis/genética , Proteínas Recombinantes , Vacinas Combinadas , Vacinas de Subunidades Antigênicas
16.
PLoS One ; 13(8): e0201922, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133484

RESUMO

Neisserial heparin binding antigen (NHBA) is one of three main recombinant protein antigens in 4CMenB, a vaccine for the prevention of invasive meningococcal disease caused by Neisseria meningitidis serogroup B. NHBA is a surface-exposed lipoprotein composed of a predicted disordered N-terminal region, an arginine-rich region that binds heparin, and a C-terminal domain that folds as an anti-parallel ß-barrel and that upon release after cleavage by human proteases alters endothelial permeability. NHBA induces bactericidal antibodies in humans, and NHBA-specific antibodies elicited by the 4CMenB vaccine contribute to serum bactericidal activity, the correlate of protection. To better understand the structural bases of the human antibody response to 4CMenB vaccination and to inform antigen design, we used X-ray crystallography to elucidate the structures of two C-terminal fragments of NHBA, either alone or in complex with the Fab derived from the vaccine-elicited human monoclonal antibody 5H2, and the structure of the unbound Fab 5H2. The structures reveal details on the interaction between an N-terminal ß-hairpin fragment and the ß-barrel, and explain how NHBA is capable of generating cross-reactive antibodies through an extensive conserved conformational epitope that covers the entire C-terminal face of the ß-barrel. By providing new structural information on a vaccine antigen and on the human immune response to vaccination, these results deepen our molecular understanding of 4CMenB, and might also aid future vaccine design projects.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
17.
FEBS Lett ; 581(24): 4723-6, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17869250

RESUMO

The solution structure of the catalytic domain of MMP-20, a member of the matrix metalloproteinases family not yet structurally characterized, complexed with N-Isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid (NNGH), is here reported and compared with other MMPs-NNGH adducts. The backbone dynamic has been characterized as well. We have found that, despite the same fold and very high overall similarity, the present structure experiences specific structural and dynamical similarities with some MMPs and differences with others, around the catalytic cavity. The present solution structure, not only contributes to fill the gap of structural knowledge on human MMPs, but also provides further information to design more selective and efficient inhibitors for a specific member of this class of proteins.


Assuntos
Metaloproteinase 20 da Matriz/química , Metaloproteinase 20 da Matriz/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Metaloproteinase 20 da Matriz/genética , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
18.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 6): 305-314, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580917

RESUMO

Neisserial heparin-binding antigen (NHBA) is a surface-exposed lipoprotein from Neisseria meningitidis and is a component of the meningococcus B vaccine Bexsero. As part of a study to characterize the three-dimensional structure of NHBA and the molecular basis of the human immune response to Bexsero, the crystal structures of two fragment antigen-binding domains (Fabs) isolated from human monoclonal antibodies targeting NHBA were determined. Through a high-resolution analysis of the organization and the amino-acid composition of the CDRs, these structures provide broad insights into the NHBA epitopes recognized by the human immune system. As expected, these Fabs also show remarkable structural conservation, as shown by a structural comparison of 15 structures of apo Fab 10C3 which were obtained from crystals grown in different crystallization conditions and were solved while searching for a complex with a bound NHBA fragment or epitope peptide. This study also provides indirect evidence for the intrinsically disordered nature of two N-terminal regions of NHBA.


Assuntos
Anticorpos Antibacterianos/química , Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Fragmentos Fab das Imunoglobulinas/química , Vacinas Meningocócicas/química , Neisseria meningitidis/química , Sequência de Aminoácidos , Anticorpos Antibacterianos/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/imunologia , Cinética , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Modelos Moleculares , Neisseria meningitidis/imunologia , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
19.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 3): 214-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26919525

RESUMO

Staphylococcus pseudintermedius is a leading cause of disease in dogs, and zoonosis causes human infections. Methicillin-resistant S. pseudintermedius strains are emerging, resembling the global health threat of S. aureus. Therefore, it is increasingly important to characterize potential targets for intervention against S. pseudintermedius. Here, FhuD, an S. pseudintermedius surface lipoprotein implicated in iron uptake, was characterized. It was found that FhuD bound ferrichrome in an iron-dependent manner, which increased the thermostability of FhuD by >15 °C. The crystal structure of ferrichrome-free FhuD was determined via molecular replacement at 1.6 Å resolution. FhuD exhibits the class III solute-binding protein (SBP) fold, with a ligand-binding cavity between the N- and C-terminal lobes, which is here occupied by a PEG molecule. The two lobes of FhuD were oriented in a closed conformation. These results provide the first detailed structural characterization of FhuD, a potential therapeutic target of S. pseudintermedius.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Membrana Transportadoras/química , Staphylococcus , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Ferricromo/química , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , Sideróforos/química , Homologia Estrutural de Proteína
20.
PLoS One ; 10(8): e0135474, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26280677

RESUMO

Developing a universal influenza vaccine that induces broad spectrum and longer-term immunity has become an important potentially achievable target in influenza vaccine research and development. Hemagglutinin (HA) and neuraminidase (NA) are the two major influenza virus antigens. Although antibody responses against influenza virus are mainly directed toward HA, NA is reported to be more genetically stable; hence NA-based vaccines have the potential to be effective for longer time periods. NA-specific immunity has been shown to limit the spread of influenza virus, thus reducing disease symptoms and providing cross-protection against heterosubtypic viruses in mouse challenge experiments. The production of large quantities of highly pure and stable NA could be beneficial for the development of new antivirals, subunit-based vaccines, and novel diagnostic tools. In this study, recombinant NA (rNA) was produced in mammalian cells at high levels from both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) influenza viruses. Biochemical, structural, and immunological characterizations revealed that the soluble rNAs produced are tetrameric, enzymatically active and immunogenic, and finally they represent good alternatives to conventionally used sources of NA in the Enzyme-Linked Lectin Assay (ELLA).


Assuntos
Antígenos Virais/imunologia , Lectinas/imunologia , Neuraminidase/imunologia , Proteínas Recombinantes/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Aves , Linhagem Celular , Proteção Cruzada/imunologia , Reações Cruzadas/imunologia , ELISPOT/métodos , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA