Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 53(6): 536, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751823

RESUMO

This study evaluated the effects of prenatal nutrition on body weight (BW), average daily gain (ADG), rump fat thickness (RFT), backfat thickness (BFT), ribeye area (REA), muscle cell area (MCA), and the number of cells in REA (NCREA) of young Nellore bulls during the rearing period. After pregnancy confirmation (30 days of pregnancy), 126 Nellore cows were separated into three prenatal nutritional treatments (NP (control; 0.03% of BW), only mineral supplementation; PP (0.3% of BW), protein-energy supplementation in the final third; and FP (0.3% of BW) protein-energy supplementation during the entire pregnancy). After calving, all animals were submitted to the same environmental conditions (sanitary and nutritional) and the different supplementation protocols ceased. The males (63 bulls) were evaluated during the entire rearing phase (210 ± 28 days to 540 ± 28 days of age) to weight gain (BW and ADG), carcass characteristics (RFT, BFT, and REA), and for histological assessments (MCA and NCREA; 7 animals per treatment randomly selected). All phenotypes were subjected to an analysis of variance. The different prenatal stimuli had no effect on BFT, RFT, MCA, and NCREA (P > 0.05); however, prenatal nutrition influenced BW of the animals during the rearing phase (P < 0.01) and showed a tendency on ADG (P = 0.09) and REA (P = 0.08). In conclusion, the offspring from FP treatment showed greater BW during the rearing phase in comparison to the NP group. This is related to a greater protein offered in prenatal nutrition, increasing muscle development during the gestational period.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna , Aumento de Peso , Tecido Adiposo , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Feminino , Masculino , Músculos , Gravidez
2.
Animals (Basel) ; 14(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38396620

RESUMO

Maternal nutrition has the ability of influence critical processes in fetal life, including muscle development. Also, in this period, epigenetic sensitivity to external stimuli is higher and produces long-lasting effects. Thus, the aim of this study was to investigate epigenetic mechanisms, including the identification and characterization of long non-coding RNA (lncRNA) from animals that had undergone different strategies of prenatal supplementation. A group of Nellore cows (n = 126) were separated into three nutritional plans: NP (control)-Not Programmed, without protein-energy supplementation; PP-Partially Programmed, protein-energy supplementation in the final third of pregnancy; and CP-Complete Programming, protein-energy supplementation during the full period of gestation. A total of 63 male offspring were used in this study, of which 15 (5 per treatment) had Longissimus thoracis muscle at 15 (biopsy) and 22 months (slaughter). Biopsy samples were subjected to RNA extraction and sequencing. Differential expression (DE) of remodeling factors and chromatin-modifying enzyme genes were performed. For the identification and characterization of lncRNA, a series of size filters and protein coding potential tests were performed. The lncRNAs identified had their differential expression and regulatory potential tested. Regarding DE of epigenetic mechanisms, no differentially expressed gene was found (p > 0.1). Identification of potential lncRNA was successful, identifying 1823 transcripts at 15 months and 1533 at 22 months. Among these, four were considered differentially expressed between treatments at 15 months and 6 were differentially expressed at 22 months. Yet, when testing regulatory potential, 13 lncRNAs were considered key regulators in the PP group, and 17 in the CP group. PP group lncRNAs possibly regulate fat-cell differentiation, in utero embryonic development, and transforming growth factor beta receptor, whereas lncRNA in the CP group regulates in utero embryonic development, fat-cell differentiation and vasculogenesis. Maternal nutrition had no effect on differential expression of epigenetic mechanisms; however, it seems to impair lncRNA regulation of epigenetics.

3.
Vet Res Commun ; 47(2): 457-471, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35750996

RESUMO

This study investigated the effect of different prenatal nutrition approaches in 126 pregnant Nellore cows on reproductive and nutrigenetic traits of the male offspring during the finishing phase. For that purpose, three nutritional treatments were used in these cows during pregnancy: PP - protein-energy supplementation in the final third, FP - protein-energy supplementation during the entire pregnancy, and NP - (control) only mineral supplementation. The male progeny (63 bulls; 665 ± 28 days of age) were evaluated for scrotal circumference, seminal traits, number of Sertoli cells and testicular area. We performed a genomic association (700 K SNPs) for scrotal circumference at this age. In addition, a functional enrichment was performed in search of significant metabolic pathways (P < 0.05) with inclusion of genes that are expressed in these genomic windows by the MetaCore software. With the exception of major sperm defects (P < 0.1), the other phenotypes showed no difference between prenatal treatments. We found genes and metabolic pathways (P < 0.05) that are associated with genomic windows (genetic variance explained >1%) in different treatments. These molecular findings indicate that there is genotype-environment interaction among the different prenatal treatments and that the FP treatment showed greater major sperm defects compared to the NP treatment.


Assuntos
Nutrigenômica , Sêmen , Masculino , Feminino , Gravidez , Bovinos , Animais , Reprodução , Polimorfismo de Nucleotídeo Único , Suplementos Nutricionais
4.
Vet Sci ; 10(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37505848

RESUMO

This study aimed to evaluate the effects of different prenatal nutrition treatments on pregnant cows and their progeny. One hundred and twenty-six pregnant Nellore cows (455.3 ± 8.1 kg) were allocated in three different nutritional treatments during pregnancy: NP-control, PP-protein-energy supplementation in the last 3 months of pregnancy, and FP-the same supplementation throughout pregnancy. After parturition, all cows and calves received the same environmental and nutrition condition. The body condition score (BCS), body weight (BW), ribeye area (REA), backfat thickness (BFT), and rumpfat thickness (RFT) were collected on four occasions during pregnancy in the cows and from birth to finishing in calves. All data (cows and calves) were submitted to an analysis of variance (p < 0.05) using a linear model (MIXED procedure; SAS software). The BW, RFT, and BCS from the cows showed significant differences in the middle third of pregnancy and pre-delivery and RFT postpartum (p < 0.05). For the offspring, the weaning weight showed a tendency (NP lighter than others). In terms of gain, the PP group tended to be higher in RFT at calving (p = 0.06), in REA at finishing (p = 0.09), and in ADG in the same period (p = 0.09). The prenatal nutrition strategies had little or no effect on the beef cattle postnatal performance.

5.
Metabolites ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248812

RESUMO

This study investigated changes in meat and subcutaneous fat metabolomes and possible metabolic pathways related to prenatal nutrition in beef cattle. For this purpose, 18 Nellore bulls were used for meat sampling and 15 for fat sampling. The nutritional treatments during the gestation were: NP-not programmed or control, without protein-energy supplementation; PP-partially programmed, with protein-energy supplementation (0.3% of body weight (BW)) only in the final third of pregnancy; and FP-full programming, with protein-energy supplementation (0.3% of BW) during the entire pregnancy. The meat and fat samples were collected individually 24 h after slaughter, and the metabolites were extracted using a combination of chemical reagents and mechanical processes and subsequently quantified using liquid chromatography or flow injection coupled to mass spectrometry. The data obtained were submitted to principal component analysis (PCA), analysis of variance (ANOVA), and functional enrichment analysis, with a significance level of 5%. The PCA showed an overlap between the treatments for both meat and fat. In meat, 25 metabolites were statistically different between treatments (p ≤ 0.05), belonging to four classes (glycerophospholipids, amino acids, sphingolipids, and biogenic amine). In fat, 10 significant metabolites (p ≤ 0.05) were obtained in two classes (phosphatidylcholine and lysophosphatidylcholine). The functional enrichment analysis showed alterations in the aminoacyl-tRNA pathway in meat (p = 0.030); however, there was no pathway enriched for fat. Fetal programming influenced the meat and fat metabolomes and the aminoacyl-tRNA metabolic pathway, which is an important candidate for the biological process linked to meat quality and related to fetal programming in beef cattle.

6.
Metabolites ; 12(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35629945

RESUMO

This study investigated the effect of prenatal nutrition on liver metabolome and on body (BW) and liver weight (LW) of Nellore bulls at slaughter. Three treatments were applied in 126 cows during pregnancy: NP­control (mineral supplementation); PP­protein-energy supplementation in the third trimester; and FP­protein-energy supplementation during the entire pregnancy. Offspring BW and LW were evaluated, and a targeted metabolomics analysis was performed on their livers (n = 18, 22.5 ± 1 months of age). Data were submitted to principal component analysis (PCA), analysis of variance (ANOVA), enrichment analysis, and Pearson's correlation analysis. The phenotypes did not show differences between treatments (p > 0.05). Metabolites PCA showed an overlap of treatment clusters in the analysis. We found significant metabolites in ANOVA (p ≤ 0.05; Glycine, Hydroxytetradecadienylcarnitine, Aminoadipic acid and Carnosine). Enrichment analysis revealed some biological processes (Histidine metabolism, beta-Alanine metabolism, and Lysine degradation). Pearson's correlation analysis showed 29 significant correlated metabolites with BW and 1 metabolite correlated with LW. In summary, prenatal nutrition did not show effects on the phenotypes evaluated, but affected some metabolites and biological pathways, mainly related to oxidative metabolism. In addition, BW seems to influence the hepatic metabolome more than LW, due to the amount and magnitude of correlations found.

7.
J Appl Genet ; 63(4): 717-728, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35859251

RESUMO

This study assessed differential gene expression and identified expression quantitative trait loci (eQTLs) from samples of Longissimus lumborum muscle from bulls at 15 months of age submitted to different prenatal nutrition. Upon confirmation of pregnancy, 126 dams were separated into three diet treatments varying the period of inclusion of energy protein supplementation (NP, PP, and FP). At calving, 63 males were genotyped with GGP LD BeadChip. The skeletal muscle of 15 bulls was sequenced (RNA-seq) at 15 months of age. The EdgeR package was used for differential gene expression and principal component analysis (PCA), and the Matrix eQTL package was used for the eQTLs analysis (R statistical). The functional enrichment analysis was performed using the MetaCore® software. No genes differentially expressed were found between treatments (FDR > 0.05); nevertheless, we found 179 cis-tag-eQTLs and 20,762 trans-tag-eQTLs (FDR < 0.05) after linkage disequilibrium analysis. The functional enrichment analysis identified terms from gene ontology related to genes associated to trans-eQTLs (FDR < 0.05) as well as metabolic pathways (> gScore). Most biological pathways and genes found had been previously associated to fetal programming. The different prenatal supplementation strategies did not impact on muscle transcriptome of bulls. Additionally, there is a link between genotype and gene expression levels related to developmental traits in Nellore cattle.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Bovinos/genética , Animais , Masculino , Transcriptoma , Genótipo , Desenvolvimento Fetal/genética , Estudo de Associação Genômica Ampla , Perfilação da Expressão Gênica
8.
Metabolites ; 12(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557286

RESUMO

This study evaluated the effects of gestational supplementation strategy on nitrogen isotopic signature in blood plasma of beef cows and their progeny. The study comprised 15 pregnant Nellore cows divided into three different supplementation protocols: NP) non-programmed group; PP) cows receiving protein−energy supplement in the last third of pregnancy; and FP) cows receiving protein−energy supplement throughout the gestational period. Blood plasma from cows was sampled at the beginning of gestation, in the prepartum, and postpartum periods as well as from their calves at 30 and 180 days of age, for the analysis of stable isotope ratios 15 N/14 N. At pre- and postpartum periods, cows fed PP and FP presented greater abundance of δ15 N compared to NP (p < 0.05) at pre- and postpartum. All three groups showed significant differences (p < 0.05) in the postpartum period. The δ15 N values of calves at 30 days of age differed between the NP group and PP and FP groups (p < 0.05), with no difference (p > 0.05) at 180 days of age. The different gestational supplementation strategies influenced isotopic fractionation of nutrients of cows and their calves after birth, indicating effects on nutritional metabolism and cumulative behavior on isotope abundance related to consumption during gestation.

9.
Front Genet ; 12: 737382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887899

RESUMO

Maternal nutrition during pregnancy influences postnatal life of animals; nevertheless, few studies have investigated its effects on the productive performance and reproductive development of heifers. This study evaluated the performance, reproductive development, and correlation between reproduction × fat thickness and performance × ribeye area (REA) traits of heifers. We also performed an exploratory genomic association during the rearing period in heifers submitted to fetal programming. The study comprised 55 Nellore heifers born to dams exposed to one of the following nutritional planes: control, without protein-energy supplementation; PELT, protein-energy last trimester, protein-energy supplementation offered in the final third of pregnancy; and PEWG, protein-energy whole gestation, protein-energy supplementation upon pregnancy confirmation. Protein-energy supplementation occurred at the level of 0.3% live weight. After weaning, heifers were submitted to periodic evaluations of weight and body composition by ultrasonography. From 12 to 18 months, we evaluated the reproductive tract of heifers to monitor its development for sexual precocity and ovarian follicle population. The treatments had no effect (p > 0.05) on average daily gain; however, the weight of the animals showed a significant difference over time (p = 0.017). No differences were found between treatments for REA, backfat, and rump fat thickness, nor for puberty age, antral follicular count, and other traits related to reproductive tract development (p > 0.05). The correlation analysis between performance traits and REA showed high correlations (r > 0.37) between REA at weaning and year versus weight from weaning until yearling; however, no correlation was found for reproductive development traits versus fat thickness (p > 0.05). The exploratory genomic association study showed one single-nucleotide polymorphism (SNP) for each treatment on an intergenic region for control and PEWG, and the one for PELT on an intronic region of RAPGEF1 gene. Maternal nutrition affected only the weight of the animals throughout the rearing period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA