Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 6): 1881-1890, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738943

RESUMO

Recent improvements in both X-ray detectors and readout speeds have led to a substantial increase in the volume of X-ray fluorescence data being produced at synchrotron facilities. This in turn results in increased challenges associated with processing and fitting such data, both temporally and computationally. Herein an abridging approach is described that both reduces and partially integrates X-ray fluorescence (XRF) data sets to obtain a fivefold total improvement in processing time with negligible decrease in quality of fitting. The approach is demonstrated using linear least-squares matrix inversion on XRF data with strongly overlapping fluorescent peaks. This approach is applicable to any type of linear algebra based fitting algorithm to fit spectra containing overlapping signals wherein the spectra also contain unimportant (non-characteristic) regions which add little (or no) weight to fitted values, e.g. energy regions in XRF spectra that contain little or no peak information.


Assuntos
Algoritmos , Síncrotrons , Fluorescência , Radiografia , Raios X
2.
J Synchrotron Radiat ; 26(Pt 2): 497-503, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855260

RESUMO

The X-ray fluorescence data from X-ray microprobe and nanoprobe measurements must be fitted to obtain reliable elemental maps. The most common approach in many fitting programs is to initially remove a per-pixel baseline. Using X-ray fluorescence data of yeast and glial cells, it is shown that per-pixel baselines can result in significant, systematic errors in quantitation and that significantly improved data can be obtained by calculating an average blank spectrum and subtracting this from each pixel.

3.
J Synchrotron Radiat ; 25(Pt 6): 1780-1789, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407190

RESUMO

Synchrotron X-ray fluorescence imaging enables visualization and quantification of microscopic distributions of elements. This versatile technique has matured to the point where it is used in a wide range of research fields. The method can be used to quantitate the levels of different elements in the image on a pixel-by-pixel basis. Two approaches to X-ray fluorescence image analysis are commonly used, namely, (i) integrative analysis, or window binning, which simply sums the numbers of all photons detected within a specific energy region of interest; and (ii) parametric analysis, or fitting, in which emission spectra are represented by the sum of parameters representing a series of peaks and other contributing factors. This paper presents a quantitative comparison between these two methods of image analysis using X-ray fluorescence imaging of mouse brain-tissue sections; it is shown that substantial errors can result when data from overlapping emission lines are binned rather than fitted. These differences are explored using two different digital signal processing data-acquisition systems with different count-rate and emission-line resolution characteristics. Irrespective of the digital signal processing electronics, there are substantial differences in quantitation between the two approaches. Binning analyses are thus shown to contain significant errors that not only distort the data but in some cases result in complete reversal of trends between different tissue regions.

4.
J Synchrotron Radiat ; 23(Pt 4): 901-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359138

RESUMO

An X-ray fluorescence flow cytometer that can determine the total metal content of single cells has been developed. Capillary action or pressure was used to load cells into hydrophilic or hydrophobic capillaries, respectively. Once loaded, the cells were transported at a fixed vertical velocity past a focused X-ray beam. X-ray fluorescence was then used to determine the mass of metal in each cell. By making single-cell measurements, the population heterogeneity for metals in the µM to mM concentration range on fL sample volumes can be directly measured, a measurement that is difficult using most analytical methods. This approach has been used to determine the metal composition of 936 individual bovine red blood cells (bRBC), 31 individual 3T3 mouse fibroblasts (NIH3T3) and 18 Saccharomyces cerevisiae (yeast) cells with an average measurement frequency of ∼4 cells min(-1). These data show evidence for surprisingly broad metal distributions. Details of the device design, data analysis and opportunities for further sensitivity improvement are described.


Assuntos
Citometria de Fluxo , Animais , Bovinos , Desenho de Equipamento , Fluorescência , Camundongos , Células NIH 3T3 , Radiografia , Raios X
5.
Transl Stroke Res ; 10(3): 287-297, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29949086

RESUMO

Intracerebral hemorrhage (ICH) causes blood-brain barrier (BBB) damage along with altered element levels in the brain. BBB permeability was quantified at 3, 7, and 14 days with Evans Blue dye after collagenase-induced ICH in rat. At peak permeability (day 3), a gadolinium (Gd)-based contrast agent was injected to further characterize BBB disruption, and X-ray fluorescence imaging (XFI) was used to map Gd, Fe, Cl, and other elements. XFI revealed that Ca, Cl, Gd, and Fe concentrations were significantly elevated, whereas K was significantly decreased. Therefore, using Gd-XFI, we co-determined BBB dysfunction with alterations in the metallome, including those that contribute to cell death and functional outcome. Warfarin was administered 3 days post-ICH to investigate whether additional or new bleeding occurs during peak BBB dysfunction, and hematoma volume was assessed on day 4. Warfarin administration prolonged bleeding time after a peripheral cut-induced bleed, but warfarin did not worsen hematoma volume. Accordingly, extensive BBB leakage occurred after ICH, but did not appear to affect total hematoma size.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Hemorragia Cerebral/metabolismo , Animais , Barreira Hematoencefálica/química , Barreira Hematoencefálica/patologia , Hemorragia Cerebral/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
6.
Metallomics ; 11(3): 621-631, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30688331

RESUMO

Mercury is one of the most toxic elements threatening the biosphere, with levels steadily rising due to both natural and human activities. Selenium is an essential micronutrient, required for normal development and functioning of many organisms. While selenium is known to counteract mercury's toxicity under some conditions, to date information about the mercury-selenium relationship is fragmented and often controversial. As part of a systematic study of mercury and selenium interactions, zebrafish (Danio rerio) larvae (a model verterbrate) were exposed to methylmercury chloride or mercuric chloride. The influence of pre- and post-treatment of selenomethionine on the level and distribution of mercury and selenium in the brain and eye sections, as well as on toxicity, were examined. Selenomethionine treatment decreased the amount of maternally transfered mercury in the larval brain. Selenomethionine treatment prior to exposure to mercuric chloride increased both mercury and selenium levels in the brain but decreased their toxic effects. Conversely, methylmercury levels were not changed as a result of selenium pre-treatment, while toxicity was increased. Strikingly, both forms of mercury severely disrupted selenium metabolism, not only by depleting selenium levels due to formation of Hg-Se complexes, but also by blocking selenium transport into and out of tissues, suggesting that restoring normal selenium levels by treating the organism with selenium after mercury exposure may not be possible. Disruption of selenium metabolism by mercury may lead to disruption in function of selenoproteins. Indeed, the production of thyroid hormones by selenoprotein deiodinases was found to be severely impaired as a result of mercury exposure, with selenomethionine not always being a suitable source of selenium to restore thyroid hormone levels.


Assuntos
Larva/efeitos dos fármacos , Mercúrio/toxicidade , Selênio , Animais , Química Encefálica/efeitos dos fármacos , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Larva/química , Larva/crescimento & desenvolvimento , Larva/metabolismo , Compostos de Metilmercúrio/toxicidade , Selênio/metabolismo , Selênio/fisiologia , Hormônios Tireóideos/metabolismo , Peixe-Zebra/metabolismo
7.
Methods Mol Biol ; 1745: 97-112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29476465

RESUMO

X-ray fluorescence-detected flow cytometry can enable the detection and characterization of ultra-trace, trace, and bulk elemental content at the cellular level using synchrotron-induced x-ray emission from fully aquated actively respiring cells. Although very much still a technique in development, this technique has been used to characterize cell-to-cell elemental variability in bovine red blood cells, Saccharomyces cerevisiae, and NIH3T3 mouse fibroblasts. Herein we describe the experimental setup and the key methodological aspects of data collection and processing.


Assuntos
Citometria de Fluxo/métodos , Espectrometria por Raios X/métodos , Animais , Bovinos , Análise de Dados , Eritrócitos , Citometria de Fluxo/instrumentação , Camundongos , Microscopia , Células NIH 3T3 , Saccharomyces cerevisiae , Espectrometria por Raios X/instrumentação
8.
ACS Chem Neurosci ; 9(5): 886-893, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29370523

RESUMO

Stroke exacts a heavy financial and economic burden, is a leading cause of death, and is the leading cause of long-term disability in those who survive. The penumbra surrounds the ischemic core of the stroke lesion and is composed of cells that are stressed and vulnerable to death, which is due to an altered metabolic, oxidative, and ionic environment within the penumbra. Without therapeutic intervention, many cells within the penumbra will die and become part of the growing infarct, however, there is hope that appropriate therapies may allow potential recovery of cells within this tissue region, or at least slow the rate of cell death, therefore, slowing the spread of the ischemic infarct and minimizing the extent of tissue damage. As such, preserving the penumbra to promote functional brain recovery is a central goal in stroke research. While identification of the ischemic infarct, and the infarct/penumbra boundary is relatively trivial using classical histology and microscopy techniques, accurately assessing the penetration of the penumbra zone into undamaged brain tissue, and evaluating the magnitude of chemical alterations in the penumbra, has long been a major challenge to the stroke research field. In this study, we have used synchrotron-based X-ray fluorescence imaging to visualize the elemental changes in undamaged, penumbra, and infarct brain tissue, following ischemic stroke. We have employed a Gaussian mixture model to cluster tissue areas based on their elemental characteristics. The method separates the core of the infarct from healthy tissue, and also demarcates discrete regions encircling the infarct. These regions of interest can be combined with elemental and metabolic data, as well as with conventional histology. The cell populations defined by clustering provide a reproducible means of visualizing the size and extent of the penumbra at the level of the single cell and provide a critically needed tool to track changes in elemental status and penumbra size.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Biomarcadores/análise , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Acidente Vascular Cerebral/fisiopatologia
9.
Biochim Biophys Acta Gen Subj ; 1862(11): 2383-2392, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29729308

RESUMO

BACKGROUND: Selenium is an essential element with a rich and varied chemistry in living organisms. It plays a variety of important roles ranging from being essential in enzymes that are critical for redox homeostasis to acting as a deterrent for herbivory in hyperaccumulating plants. Despite its importance there are many open questions, especially related to its chemistry in situ within living organisms. SCOPE OF REVIEW: This review discusses X-ray spectroscopy and imaging of selenium in biological samples, with an emphasis on the methods, and in particular the techniques of X-ray absorption spectroscopy (XAS) and X-ray fluorescence imaging (XFI). We discuss the experimental methods and capabilities of XAS and XFI, and review their advantages and their limitations. A perspective on future possibilities and next-generation of experiments is also provided. MAJOR CONCLUSIONS: XAS and XFI provide powerful probes of selenium chemistry, together with unique in situ capabilities. The opportunities and capabilities of the next generation of advanced X-ray spectroscopy experiments are particularly exciting. GENERAL SIGNIFICANCE: XAS and XFI provide versatile tools that are generally applicable to any element with a convenient X-ray absorption edge, suitable for investigating complex systems essentially without pre-treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA