Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Chemistry ; 30(21): e202400239, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38251309

RESUMO

DNA-encoded libraries (DELs) have become a leading technology for hit identification in drug discovery projects as large, diverse libraries can be generated. DELs are commonly synthesised via split-and-pool methodology; thus, chemical transformations utilised must be highly efficient, proceeding with high conversions. Reactions performed in DEL synthesis also require a broad substrate scope to produce diverse, drug-like libraries. Many pharmaceutical compounds incorporate multiple C-N bonds, over a quarter of which are synthesised via reductive aminations. However, few on-DNA reductive amination procedures have been developed. Herein is reported the application of the micelle-forming surfactant, TPGS-750-M, to the on-DNA reductive amination of DNA-conjugated amines, yielding highly efficient conversions with a broad range of aldehydes, including medicinally relevant heterocyclic and aliphatic substrates. The procedure is compatible with DNA amplification and sequencing, demonstrating its applicability to DEL synthesis.


Assuntos
Aminas , Micelas , Aminação , Aminas/química , DNA/química , Replicação do DNA
2.
Nature ; 561(7722): 189-194, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209367

RESUMO

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Assuntos
Antibacterianos/classificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Biocatálise/efeitos dos fármacos , Produtos Biológicos/classificação , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , Lisina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Porinas , Ligação Proteica , Domínios Proteicos , Serina Endopeptidases , Especificidade por Substrato
3.
Bioorg Med Chem Lett ; 89: 129277, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105490

RESUMO

Inhibition of NF-κB inducing kinase (NIK) has been pursued as a promising therapeutic target for autoimmune disorders due to its highly regulated role in key steps of the NF-κB signaling pathway. Previously reported NIK inhibitors from our group were shown to be potent, selective, and efficacious, but had higher human dose projections than desirable for immunology indications. Herein we report the clearance-driven optimization of a NIK inhibitor guided by metabolite identification studies and structure-based drug design. This led to the identification of an azabicyclo[3.1.0]hexanone motif that attenuated in vitro and in vivo clearance while maintaining NIK potency and increasing selectivity over other kinases, resulting in a greater than ten-fold reduction in predicted human dose.


Assuntos
NF-kappa B , Transdução de Sinais , Humanos , NF-kappa B/metabolismo , Meia-Vida , Desenho de Fármacos
4.
Chem Res Toxicol ; 33(7): 1950-1959, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32508087

RESUMO

The bioactivation of xenobiotics to yield reactive metabolites can lead to tolerability and toxicity concerns within a drug discovery program. Development of strategies for mitigating the metabolic liability of commonly encountered toxicophores, such as anilines, relies on an understanding of the relative tendency of these functionalities to undergo bioactivation. In this report, we present the first systematic study of the structure-activity relationships of the bioactivation of aryl amine fragments (molecular weight < 250 Da) using a glutathione (GSH) trapping assay in the presence of human liver microsomes and the reduced form of nicotinamide adenine dinucleotide phosphate. This study demonstrates that conversion of anilines to nitrogen-containing heteroarylamines results in a lower abundance of GSH conjugates in the order phenyl > pyrimidine ≈ pyridine > pyridazine. Introduction of electron-withdrawing functionality on the aromatic ring had a less pronounced effect on the extent of GSH conjugation. Examination of more drug-like compounds sourced from in-house drug discovery programs revealed similar trends in bioactivation between matched pairs containing (hetero)aryl amines. This study provides medicinal chemists with insights and qualitative guidance for the minimization of risks related to aryl amine metabolism.


Assuntos
Compostos de Anilina/metabolismo , Glutationa/metabolismo , Fenóis/metabolismo , Ativação Metabólica , Compostos de Anilina/química , Humanos , Microssomos Hepáticos/metabolismo , Fenóis/química , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 29(16): 2294-2301, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307887

RESUMO

CDK4 and CDK6 are kinases with similar sequences that regulate cell cycle progression and are validated targets in the treatment of cancer. Glioblastoma is characterized by a high frequency of CDKN2A/CCND2/CDK4/CDK6 pathway dysregulation, making dual inhibition of CDK4 and CDK6 an attractive therapeutic approach for this disease. Abemaciclib, ribociclib, and palbociclib are approved CDK4/6 inhibitors for the treatment of HR+/HER2- breast cancer, but these drugs are not expected to show strong activity in brain tumors due to poor blood brain barrier penetration. Herein, we report the identification of a brain-penetrant CDK4/6 inhibitor derived from a literature molecule with low molecular weight and topological polar surface area (MW = 285 and TPSA = 66 Å2), but lacking the CDK2/1 selectivity profile due to the absence of a basic amine. Removal of a hydrogen bond donor via cyclization of the pyrazole allowed for the introduction of basic and semi-basic amines, while maintaining in many cases efflux ratios reasonable for a CNS program. Ultimately, a basic spiroazetidine (cpKa = 8.8) was identified that afforded acceptable selectivity over anti-target CDK1 while maintaining brain-penetration in vivo (mouse Kp,uu = 0.20-0.59). To probe the potency and selectivity, our lead compound was evaluated in a panel of glioblastoma cell lines. Potency comparable to abemaciclib was observed in Rb-wild type lines U87MG, DBTRG-05MG, A172, and T98G, while Rb-deficient cell lines SF539 and M059J exhibited a lack of sensitivity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células MCF-7 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
J Pharmacol Exp Ther ; 360(1): 226-238, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27821712

RESUMO

Bruton's tyrosine kinase (BTK) is a member of the Tec family of cytoplasmic tyrosine kinases involved in B-cell and myeloid cell signaling. Small molecule inhibitors of BTK are being investigated for treatment of several hematologic cancers and autoimmune diseases. GDC-0853 ((S)-2-(3'-(hydroxymethyl)-1-methyl-5-((5-(2-methyl-4-(oxetan-3-yl)piperazin-1-yl)pyridin-2-yl)amino)-6-oxo-1,6-dihydro-[3,4'-bipyridin]-2'-yl)-7,7-dimethyl-3,4,7,8-tetrahydro-2H-cyclopenta[4,5]pyrrolo[1,2-a]pyrazin-1(6H)-one) is a selective and reversible oral small-molecule BTK inhibitor in development for the treatment of rheumatoid arthritis and systemic lupus erythematosus. In Sprague-Dawley (SD) rats, administration of GDC-0853 and other structurally diverse BTK inhibitors for 7 days or longer caused pancreatic lesions consisting of multifocal islet-centered hemorrhage, inflammation, fibrosis, and pigment-laden macrophages with adjacent lobular exocrine acinar cell atrophy, degeneration, and inflammation. Similar findings were not observed in mice or dogs at much higher exposures. Hemorrhage in the peri-islet vasculature emerged between four and seven daily doses of GDC-0853 and was histologically similar to spontaneously occurring changes in aging SD rats. This suggests that GDC-0853 could exacerbate a background finding in younger animals. Glucose homeostasis was dysregulated following a glucose challenge; however, this occurred only after 28 days of administration and was not directly associated with onset or severity of pancreatic lesions. There were no changes in other common serum biomarkers assessing endocrine and exocrine pancreatic function. Additionally, these lesions were not readily detectable via Doppler ultrasound, computed tomography, or magnetic resonance imaging. Our results indicate that pancreatic lesions in rats are likely a class effect of BTK inhibitors, which may exacerbate an islet-centered pathology that is unlikely to be relevant to humans.


Assuntos
Pâncreas/efeitos dos fármacos , Piperazinas/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridonas/toxicidade , Pirróis/toxicidade , Tirosina Quinase da Agamaglobulinemia , Animais , Cães , Relação Dose-Resposta a Droga , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Humanos , Masculino , Camundongos , Pâncreas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Ratos , Especificidade da Espécie
7.
J Am Chem Soc ; 138(26): 8235-46, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27266267

RESUMO

From the enediyne class of antitumor antibiotics, uncialamycin is among the rarest and most potent, yet one of the structurally simpler, making it attractive for chemical synthesis and potential applications in biology and medicine. In this article we describe a streamlined and practical enantioselective total synthesis of uncialamycin that is amenable to the synthesis of novel analogues and renders the natural product readily available for biological and drug development studies. Starting from hydroxy- or methoxyisatin, the synthesis features a Noyori enantioselective reduction, a Yamaguchi acetylide-pyridinium coupling, a stereoselective acetylide-aldehyde cyclization, and a newly developed annulation reaction that allows efficient coupling of a cyanophthalide and a p-methoxy semiquinone aminal to forge the anthraquinone moiety of the molecule. Overall, the developed streamlined synthesis proceeds in 22 linear steps (14 chromatographic separations) and 11% overall yield. The developed synthetic strategies and technologies were applied to the synthesis of a series of designed uncialamycin analogues equipped with suitable functional groups for conjugation to antibodies and other delivery systems. Biological evaluation of a select number of these analogues led to the identification of compounds with low picomolar potencies against certain cancer cell lines. These compounds and others like them may serve as powerful payloads for the development of antibody drug conjugates (ADCs) intended for personalized targeted cancer therapy.


Assuntos
Antraquinonas/síntese química , Antraquinonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Antraquinonas/química , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Quinonas/química , Relação Estrutura-Atividade
8.
J Org Chem ; 81(18): 8617-24, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27529722

RESUMO

A general and efficient method for a metal-free one-pot synthesis of highly substituted fused imidazole-containing 5,5- and 5,6-fused bicyclic heterocycles is described. Starting from commercially available substrates and reagents, the reaction proceeds through two C-N bond formations and an oxidative dehydrogenation to form highly substituted products in good to excellent yield.

9.
Bioorg Med Chem Lett ; 26(18): 4387-4393, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27542308

RESUMO

The retinoic acid receptor-related orphan receptor RORγ plays key roles in the development and differentiation of TH17 cells, and thus in IL-17 expression, thymocyte development and regulation of metabolism. With the recent progression into phase 2 clinical trials of both oral and topically administered inverse agonists, and with others close behind, there is significant interest in the discovery of RORγ modulators. This digest covers key developments around RORγ agonists, antagonists and inverse agonists; orthosteric and allosteric binders; and aims to summarize the available information concerning the potential utility of RORγ modulators.


Assuntos
Núcleo Celular/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Animais , Diferenciação Celular , Interleucina-17/metabolismo , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Relação Estrutura-Atividade , Linfócitos T Auxiliares-Indutores/metabolismo
10.
Bioorg Med Chem Lett ; 26(15): 3518-24, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27346791

RESUMO

A series of 4-azaindole-containing p21-activated kinase-1 (PAK1) inhibitors was prepared with the goal of improving physicochemical properties relative to an indole starting point. Indole 1 represented an attractive, non-basic scaffold with good PAK1 affinity and cellular potency but was compromised by high lipophilicity (clogD=4.4). Azaindole 5 was designed as an indole surrogate with the goal of lowering logD and resulted in equipotent PAK1 inhibition with a 2-fold improvement in cellular potency over 1. Structure-activity relationship studies around 5 identified additional 4-azaindole analogs with superior PAK1 biochemical activity (Ki <10nM) and up to 24-fold selectivity for group I over group II PAKs. Compounds from this series showed enhanced permeability, improved aqueous solubility, and lower plasma protein binding over indole 1. The improvement in physicochemical properties translated to a 20-fold decrease in unbound clearance in mouse PK studies for azaindole 5 relative to indole 1.


Assuntos
Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Cães , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Células Madin Darby de Rim Canino , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Quinases Ativadas por p21/metabolismo
11.
Bioorg Med Chem Lett ; 26(2): 575-579, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26675441

RESUMO

BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridazinas/química , Piridazinas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Cães , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/metabolismo , Piridazinas/metabolismo , Piridazinas/farmacocinética , Pirimidinonas/metabolismo , Pirimidinonas/farmacocinética , Ratos , Tiofenos/metabolismo , Tiofenos/farmacocinética
12.
Bioorg Med Chem Lett ; 25(6): 1333-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25701252

RESUMO

SAR studies focused on improving the pharmacokinetic (PK) properties of the previously reported potent and selective Btk inhibitor CGI-1746 (1) resulted in the clinical candidate GDC-0834 (2), which retained the potency and selectivity of CGI-1746, but with much improved PK in preclinical animal models. Structure based design efforts drove this work as modifications to 1 were investigated at both the solvent exposed region as well as 'H3 binding pocket'. However, in vitro metabolic evaluation of 2 revealed a non CYP-mediated metabolic process that was more prevalent in human than preclinical species (mouse, rat, dog, cyno), leading to a high-level of uncertainly in predicting human pharmacokinetics. Due to its promising potency, selectivity, and preclinical efficacy, a single dose IND was filed and 2 was taken in to a single dose phase I trial in healthy volunteers to quickly evaluate the human pharmacokinetics. In human, 2 was found to be highly labile at the exo-cyclic amide bond that links the tetrahydrobenzothiophene moiety to the central aniline ring, resulting in insufficient parent drug exposure. This information informed the back-up program and discovery of improved inhibitors.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinonas/química , Tiofenos/química , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Ratos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/farmacocinética
13.
Bioorg Med Chem ; 23(5): 1062-8, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25638500

RESUMO

The total synthesis of (+)-crocacin D has been achieved in 15 steps (9 isolated intermediates) and 14% overall yield from commercially available starting materials and using (+)-crocacin C as a key intermediate. A number of simplified analogues and their biological activities are also reported.


Assuntos
Amidas/síntese química , Amidas/química , Amidas/farmacologia , Animais , Antifúngicos/farmacologia , Afídeos/efeitos dos fármacos , Herbicidas/farmacologia , Inseticidas/farmacologia
14.
Anesth Prog ; 62(1): 31-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849473

RESUMO

The α-2 adrenergic receptor agonists have been used for decades to treat common medical conditions such as hypertension; attention-deficit/hyperactivity disorder; various pain and panic disorders; symptoms of opioid, benzodiazepine, and alcohol withdrawal; and cigarette craving. (1) However, in more recent years, these drugs have been used as adjuncts for sedation and to reduce anesthetic requirements. This review will provide an historical perspective of this drug class, an understanding of pharmacological mechanisms, and an insight into current applications in clinical anesthesiology.


Assuntos
Adjuvantes Anestésicos/uso terapêutico , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Anestesia Dentária , Sedação Consciente , Adjuvantes Anestésicos/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Anestesia Geral , Humanos , Hipnóticos e Sedativos/administração & dosagem
15.
ACS Med Chem Lett ; 14(3): 233-243, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36923921

RESUMO

Non-absorbable small-molecule drugs targeted to the gut represent an alternative approach to safe, non-systemic therapeutics. Such drugs remain confined to the gastrointestinal tract upon oral dosing by virtue of their limited passive permeability, increasing the local concentration at the site of action while minimizing exposure elsewhere in the body. Herein we review the latest advances in the field of gut-restricted therapeutics, highlighting the different strategies and tactics that medicinal chemists have employed in pursuit of drugs with minimal intestinal absorption.

16.
Chem Sci ; 14(31): 8288-8294, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564419

RESUMO

Optimisation of the affinity of lead compounds is a critical challenge in the identification of drug candidates and chemical probes and is a process that takes many years. Fragment-based drug discovery has become established as one of the methods of choice for drug discovery starting with small, low affinity compounds. Due to their low affinity, the evolution of fragments to desirable levels of affinity is often a key challenge. The accepted best method for increasing the potency of fragments is by iterative fragment growing, which can be very time consuming and complex. Here, we introduce a paradigm for fragment hit optimisation using poised DNA-encoded chemical libraries (DELs). The synthesis of a poised DEL, a partially constructed library that retains a reactive handle, allows the coupling of any active fragment for a specific target protein, allowing rapid discovery of potent ligands. This is illustrated for bromodomain-containing protein 4 (BRD4), in which a weakly binding fragment was coupled to a 42-member poised DEL via Suzuki-Miyaura cross coupling resulting in the identification of an inhibitor with 51 nM affinity in a single step, representing an increase in potency of several orders of magnitude from an original fragment. The potency of the compound was shown to arise from the synergistic combination of substructures, which would have been very difficult to discover by any other method and was rationalised by X-ray crystallography. The compound showed attractive lead-like properties suitable for further optimisation and demonstrated BRD4-dependent cellular pharmacology. This work demonstrates the power of poised DELs to rapidly optimise fragments, representing an attractive generic approach to drug discovery.

17.
ACS Med Chem Lett ; 14(11): 1524-1530, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37974942

RESUMO

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts, no new antibiotic class with activity against Gram-negative bacteria has been approved in over 50 years. LepB inhibitors (LepBi) based on the arylomycin class of natural products are a novel class of antibiotics and function by inhibiting the bacterial type I signal peptidase (SPase) in Gram-negative bacteria. One critical aspect of LepBi development involves optimization of the membrane-anchored lipophilic portion of the molecule. We therefore developed an approach that assesses the effect of this portion on the complicated equilibria of plasma protein binding, crossing the outer membrane of Gram-negative bacteria and anchoring in the bacterial inner membrane to facilitate SPase binding. Our findings provide important insights into the development of antibacterial agents where the target is associated with the inner membrane of Gram-negative bacteria.

18.
Nat Cancer ; 4(6): 812-828, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277530

RESUMO

The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Medicina de Precisão , Fatores de Transcrição/metabolismo , Transdução de Sinais
19.
J Org Chem ; 77(5): 2149-58, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22263777

RESUMO

Enamides, dienamides, and enynamides are important building blocks in synthetic, biological, and medicinal chemistry as well as materials science. Despite the extensive breath of their potential utility in synthetic chemistry, there is a lack of simple, high-yielding methods to deliver them efficiently and as single isomers. In this paper, we present a novel, protecting group free, efficient, and stereoselective approach to the generation of ß-halo-enamides. The methodology presented provides a robust synthetic platform from which E- or Z-enamides can be generated in good yields and with complete stereocontrol.


Assuntos
Amidas/síntese química , Amidas/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
20.
J Org Chem ; 77(16): 6989-97, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22804781

RESUMO

The step-economic total synthesis of (+)-crocacin C has been achieved in 20% yield from commercially available starting materials. This approach requires the isolation of only 8 intermediates and can provide a reliable supply of (+)-crocacin C for the development of new antifungal and crop protection agents.


Assuntos
Alcenos/síntese química , Amidas/síntese química , Antifúngicos/síntese química , Compostos de Boro/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA