Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 51(23): 6767-73, 2003 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-14582973

RESUMO

Acetochlor degradation was studied under anaerobic conditions representative of conditions in flooded soils. Soil-water microcosms were prepared with a saturated Drummer clay loam and made anaerobic by either glucose pretreatment or N(2) sparging. Sparged microcosms consisted of sulfate-amended, unamended, and gamma-irradiated microcosms. The microcosms were sampled in triplicate at predetermined time intervals during a 371 day incubation period. Volatile, aqueous, extractable, and bound (unextractable) (14)C residues were quantified with liquid scintillation counting and characterized using high-performance liquid radiochromatography (HPLRC) and soil combustion. SO(4)(2)(-), Fe(II), CH(4), and pH were monitored. Complete anaerobic degradation of [(14)C]acetochlor was observed in all viable treatments. The time observed for 50% acetochlor disappearance (DT(50)) was 10 days for iron-reducing and sulfate-reducing conditions (sulfate-amended), 15 days for iron-reducing conditions (unamended), and 16 days for methanogenic conditions (glucose-pretreated). Acetochlor remained after 371 days in the gamma-irradiated microcosms, and metabolites were observed. [(14)C]Metabolites were detected throughout the study. Formation of one of the metabolites correlated with Fe(II) formation (r(2)(), 0.83). A significant portion of the (14)C activity was eventually incorporated into soil-bound residue (30-50% of applied acetochlor) in all treatments.


Assuntos
Herbicidas/química , Solo/análise , Toluidinas/química , Água , Anaerobiose , Radioisótopos de Carbono , Microbiologia do Solo , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA