Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1824(5): 711-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22425601

RESUMO

Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae. Here we show that recombinant AGL1 (rAGL1) and recombinant AGL3 (rAGL3) are extended proteins based upon secondary structural characteristics determined by electronic circular dichroism (CD) spectroscopy and can self-assemble into fibers and microtubes as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). CD spectroscopy results of synthetic peptides based on repeat regions in AGL1, AGL2 and AGL3 suggest that the synthetic peptides contain significant amounts of extended PPII helices and that these structures are influenced by ionic strength and, at least in one case, by concentration. Point mutations of a single residue of the repeat region of AGL3 resulted in altered secondary structures. Self-assembly of these repeats was observed by means of AFM and optical microscopy. Peptide (APADGK)(6) forms structures with similar morphology to rAGL1 suggesting that these repeats are crucial for the morphology of rAGL1 fibers. These novel self-assembling sequences may find applications as precursors for bioinspired nanomaterials.


Assuntos
Materiais Biomiméticos/síntese química , Mucoproteínas/química , Micorrizas/química , Nanofibras/química , Peptídeos/síntese química , Polilisina/química , Dicroísmo Circular , Escherichia coli/genética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Mucoproteínas/biossíntese , Mucoproteínas/genética , Micorrizas/fisiologia , Nanofibras/ultraestrutura , Concentração Osmolar , Peptídeos/química , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/microbiologia , Mutação Puntual , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Simbiose
2.
Curr Protein Pept Sci ; 13(3): 232-57, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22612782

RESUMO

The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be gathered. This review sets out to identify methodological applications of AFM for characterization of fiber-forming proteins and peptides. The basics of AFM operation are detailed, with in-depth information for any life scientist to get a grasp on AFM capabilities. It also briefly describes antibody recognition imaging and mapping of nanomechanical properties on biological samples. Subsequently, examples of AFM application to fiber-forming natural proteins, and fiber-forming synthetic peptides are given. Here, AFM is used primarily for structural characterization of fibers in combination with other techniques, such as circular dichroism and fluorescence spectroscopy. More recent developments in antibody recognition imaging to identify constituents of protein fibers formed in human disease are explored. This review, as a whole, seeks to encourage the life scientists dealing with protein aggregation phenomena to consider AFM as a part of their research toolkit, by highlighting the manifold capabilities of this technique.


Assuntos
Proteínas Imobilizadas/química , Microscopia de Força Atômica , Peptídeos/química , Proteínas/química , Algoritmos , Amiloide/química , Amiloide/ultraestrutura , Calibragem , Humanos , Proteínas Imobilizadas/ultraestrutura , Microscopia de Força Atômica/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas/ultraestrutura , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA