Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 57(12): 2017-2039, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36310103

RESUMO

Neuroinformatics is a research field that focusses on software tools capable of identifying, analysing, modelling, organising and sharing multiscale neuroscience data. Neuroinformatics has exploded in the last two decades with the emergence of the Big Data phenomenon, characterised by the so-called 3Vs (volume, velocity and variety), which provided neuroscientists with an improved ability to acquire and process data faster and more cheaply thanks to technical improvements in clinical, genomic and radiological technologies. This situation has led to a 'data deluge', as neuroscientists can routinely collect more study data in a few days than they could in a year just a decade ago. To address this phenomenon, several neuroimaging-focussed neuroinformatics platforms have emerged, funded by national or transnational agencies, with the following goals: (i) development of tools for archiving and organising analytical data (XNAT, REDCap and LabKey); (ii) development of data-driven models evolving from reductionist approaches to multidimensional models (RIN, IVN, HBD, EuroPOND, E-DADS and GAAIN BRAIN); and (iii) development of e-infrastructures to provide sufficient computational power and storage resources (neuGRID, HBP-EBRAINS, LONI and CONP). Although the scenario is still fragmented, there are technological and economical attempts at both national and international levels to introduce high standards for open and Findable, Accessible, Interoperable and Reusable (FAIR) neuroscience worldwide.


Assuntos
Biologia Computacional , Neurociências , Biologia Computacional/métodos , Neurociências/métodos , Software , Encéfalo , Neuroimagem
2.
J Biomed Inform ; 144: 104431, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385327

RESUMO

In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.


Assuntos
Idioma , Processamento de Linguagem Natural , Humanos , Registros , Itália , Unified Medical Language System
3.
J Biomed Inform ; 148: 104557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012982

RESUMO

The introduction of computerized medical records in hospitals has reduced burdensome activities like manual writing and information fetching. However, the data contained in medical records are still far underutilized, primarily because extracting data from unstructured textual medical records takes time and effort. Information Extraction, a subfield of Natural Language Processing, can help clinical practitioners overcome this limitation by using automated text-mining pipelines. In this work, we created the first Italian neuropsychiatric Named Entity Recognition dataset, PsyNIT, and used it to develop a Transformers-based model. Moreover, we collected and leveraged three external independent datasets to implement an effective multicenter model, with overall F1-score 84.77 %, Precision 83.16 %, Recall 86.44 %. The lessons learned are: (i) the crucial role of a consistent annotation process and (ii) a fine-tuning strategy that combines classical methods with a "low-resource" approach. This allowed us to establish methodological guidelines that pave the way for Natural Language Processing studies in less-resourced languages.


Assuntos
Mineração de Dados , Idioma , Humanos , Mineração de Dados/métodos , Registros Eletrônicos de Saúde , Itália , Processamento de Linguagem Natural , Estudos Multicêntricos como Assunto
4.
Sci Rep ; 13(1): 17355, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833302

RESUMO

Biomarker-based differential diagnosis of the most common forms of dementia is becoming increasingly important. Machine learning (ML) may be able to address this challenge. The aim of this study was to develop and interpret a ML algorithm capable of differentiating Alzheimer's dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal control subjects based on sociodemographic, clinical, and magnetic resonance imaging (MRI) variables. 506 subjects from 5 databases were included. MRI images were processed with FreeSurfer, LPA, and TRACULA to obtain brain volumes and thicknesses, white matter lesions and diffusion metrics. MRI metrics were used in conjunction with clinical and demographic data to perform differential diagnosis based on a Support Vector Machine model called MUQUBIA (Multimodal Quantification of Brain whIte matter biomArkers). Age, gender, Clinical Dementia Rating (CDR) Dementia Staging Instrument, and 19 imaging features formed the best set of discriminative features. The predictive model performed with an overall Area Under the Curve of 98%, high overall precision (88%), recall (88%), and F1 scores (88%) in the test group, and good Label Ranking Average Precision score (0.95) in a subset of neuropathologically assessed patients. The results of MUQUBIA were explained by the SHapley Additive exPlanations (SHAP) method. The MUQUBIA algorithm successfully classified various dementias with good performance using cost-effective clinical and MRI information, and with independent validation, has the potential to assist physicians in their clinical diagnosis.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Biomarcadores , Aprendizado de Máquina , Algoritmos
5.
Front Psychiatry ; 13: 946387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186874

RESUMO

Natural language processing (NLP) is rapidly becoming an important topic in the medical community. The ability to automatically analyze any type of medical document could be the key factor to fully exploit the data it contains. Cutting-edge artificial intelligence (AI) architectures, particularly machine learning and deep learning, have begun to be applied to this topic and have yielded promising results. We conducted a literature search for 1,024 papers that used NLP technology in neuroscience and psychiatry from 2010 to early 2022. After a selection process, 115 papers were evaluated. Each publication was classified into one of three categories: information extraction, classification, and data inference. Automated understanding of clinical reports in electronic health records has the potential to improve healthcare delivery. Overall, the performance of NLP applications is high, with an average F1-score and AUC above 85%. We also derived a composite measure in the form of Z-scores to better compare the performance of NLP models and their different classes as a whole. No statistical differences were found in the unbiased comparison. Strong asymmetry between English and non-English models, difficulty in obtaining high-quality annotated data, and train biases causing low generalizability are the main limitations. This review suggests that NLP could be an effective tool to help clinicians gain insights from medical reports, clinical research forms, and more, making NLP an effective tool to improve the quality of healthcare services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA