Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(10): e2300354, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603378

RESUMO

Targeting tubulin polymerization and depolymerization represents a promising approach to treat solid tumors. In this study, we investigated the molecular mechanisms underlying the anticancer effects of a structurally novel tubulin inhibitor, [4-(4-aminophenyl)-1-(4-fluorophenyl)-1H-pyrrol-3-yl](3,4,5-trimethoxyphenyl)methanone (ARDAP), in two- and three-dimensional MCF-7 breast cancer models. At sub-cytotoxic concentrations, ARDAP showed a marked decrease in cell proliferation, colony formation, and ATP intracellular content in MCF-7 cells, by acting through a cytostatic mechanism. Additionally, drug exposure caused blockage of the epithelial-to-mesenchymal transition (EMT). In 3D cell culture, ARDAP negatively affected tumor spheroid growth, with inhibition of spheroid formation and reduction of ATP concentration levels. Notably, ARDAP exposure promoted the differentiation of MCF-7 cells by inducing: (i) expression decrease of Oct4 and Sox2 stemness markers, both in 2D and 3D models, and (ii) downregulation of the stem cell surface marker CD133 in 2D cell cultures. Interestingly, treated MCF7 cells displayed a major sensitivity to cytotoxic effects of the conventional chemotherapeutic drug doxorubicin. In addition, although exhibiting growth inhibitory effects against breast cancer cells, ARDAP showed insignificant harm to MCF10A healthy cells. Collectively, our results highlight the potential of ARDAP to emerge as a new chemotherapeutic agent or adjuvant compound in chemotherapeutic treatments.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Proliferação de Células , Trifosfato de Adenosina , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065966

RESUMO

Wnt/ß-Catenin signaling is involved in embryonic development, regeneration, and cellular differentiation and is responsible for cancer stemness maintenance. The HSP90 molecular chaperone TRAP1 is upregulated in 60-70% of human colorectal carcinomas (CRCs) and favors stem cells maintenance, modulating the Wnt/ß-Catenin pathway and preventing ß-Catenin phosphorylation/degradation. The role of TRAP1 in the regulation of Wnt/ß-Catenin signaling was further investigated in human CRC cell lines, patient-derived spheroids, and CRC specimens. TRAP1 relevance in the activation of Wnt/ß-Catenin signaling was highlighted by a TCF/LEF Cignal Reporter Assay in Wnt-off HEK293T and CRC HCT116 cell lines. Of note, this regulation occurs through the modulation of Wnt ligand receptors LRP5 and LRP6 that are both downregulated in TRAP1-silenced cell lines. However, while LRP5 mRNA is significantly downregulated upon TRAP1 silencing, LRP6 mRNA is unchanged, suggesting independent mechanisms of regulation by TRAP1. Indeed, LRP5 is regulated upon promoter methylation in CRC cell lines and human CRCs, whereas LRP6 is controlled at post-translational level by protein ubiquitination/degradation. Consistently, human CRCs with high TRAP1 expression are characterized by the co-upregulation of active ß-Catenin, LRP5 and LRP6. Altogether, these data suggest that Wnt/ß-Catenin signaling is modulated at multiple levels by TRAP1.


Assuntos
Neoplasias do Colo/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Via de Sinalização Wnt , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Proteólise , Células Tumorais Cultivadas , Ubiquitinação , beta Catenina/metabolismo
3.
Molecules ; 25(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824685

RESUMO

Cholangiocarcinoma is a primary malignancy of the biliary tract characterized by late and unspecific symptoms, unfavorable prognosis, and few treatment options. The advent of next-generation sequencing has revealed potential targetable or actionable molecular alterations in biliary tumors. Among several identified genetic alterations, the IDH1 mutation is arousing interest due to its role in epigenetic and metabolic remodeling. Indeed, some IDH1 point mutations induce widespread epigenetic alterations by means of a gain-of-function of the enzyme, which becomes able to produce the oncometabolite 2-hydroxyglutarate, with inhibitory activity on α-ketoglutarate-dependent enzymes, such as DNA and histone demethylases. Thus, its accumulation produces changes in the expression of several key genes involved in cell differentiation and survival. At present, small-molecule inhibitors of IDH1 mutated enzyme are under investigation in preclinical and clinical phases as promising innovative treatments for IDH1-mutated intrahepatic cholangiocarcinomas. This review examines the molecular rationale and the results of preclinical and early-phase studies on novel pharmacological agents targeting mutant IDH1 in cholangiocarcinoma patients. Contextually, it will offer a starting point for discussion on combined therapies with metabolic and epigenetic drugs, to provide molecular support to target the interplay between metabolism and epigenetics, two hallmarks of cancer onset and progression.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Isocitrato Desidrogenase/antagonistas & inibidores , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos
4.
Oncol Lett ; 23(6): 185, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527787

RESUMO

Insulin-like growth factor binding protein 6 (IGFBP6) is a secreted protein with a controversial role in human malignancies, being downregulated in most types of human cancer, but upregulated in selected tumors. Ovarian cancer (OC) is a human malignancy characterized by IGFBP6 downregulation; however, the significance of its low expression during ovarian carcinogenesis is still poorly understood. In the present study, IGFBP6 expression and activation of its associated signaling pathway were evaluated in two matched OC cell lines derived from a high-grade serous OC before and after platinum resistance (PEA1 and PEA2 cells, respectively). A whole genome gene expression analysis was comparatively performed in both cell lines upon IGFBP6 stimulation using Illumina technology. IGFBP6 gene expression data from human OC cases were obtained from public datasets. Gene expression data from public datasets confirmed the downregulation of IGFBP6 in primary and metastatic OC tissues compared with in normal ovarian tissues. The comparative analysis of platinum-sensitive (PEA1) and platinum-resistant (PEA2) cell lines showed quantitative and qualitative differences in the activation of IGFBP6 signaling. Notably, IGFBP6 enhanced ERK1/2 phosphorylation only in PEA1 cells, and induced more evident and significant gene expression reprogramming in PEA1 cells compared with in PEA2 cells. Furthermore, the analysis of selected genes modulated by IGFBP6 (i.e., FOS, JUN, TNF, IL6, IL8 and EGR1) exhibited an inverse regulation in PEA1 versus PEA2 cells. In addition, selected hallmarks (TNFA_signaling_via_NFKB, TGF_beta_signaling, P53_pathway) and IL-6 signaling were positively regulated in PEA1 cells, whereas they were inhibited in PEA2 cells in response to IGFBP6. These data suggested that dysregulation of IGFBP6 signaling may serve a role in the progression of OC, and is likely associated with the development of platinum resistance.

5.
Int J Oncol ; 60(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35543151

RESUMO

Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)­1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor­associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids. In the present study, glucose uptake, lactate production and the expression of key metabolic genes were evaluated in TRAP1­silenced CRC cell models under conditions of hypoxia/normoxia. Whole genome gene expression profiling was performed in TRAP1­silenced HCT116 cells exposed to hypoxia to establish the role of TRAP1 in adaptive responses to oxygen deprivation. The results revealed that TRAP1 was involved in regulating hypoxia­induced HIF­1α stabilization and glycolytic metabolism and that glucose transporter 1 expression, glucose uptake and lactate production were partially impaired in TRAP1­silenced CRC cells under hypoxic conditions. At the transcriptional level, the gene expression reprogramming of cancer cells driven by HIF­1α was partially inhibited in TRAP1­silenced CRC cells and organoids exposed to hypoxia. Moreover, Gene Set Enrichment Analysis of TRAP1­silenced HCT116 cells exposed to hypoxia demonstrated that TRAP1 was involved in the regulation of ribosome biogenesis and this occurred with the inhibition of the mTOR pathway. Therefore, as demonstrated herein, TRAP1 is a key factor in maintaining HIF­1α­induced genetic/metabolic program under hypoxic conditions and may represent a promising target for novel metabolic therapies.


Assuntos
Neoplasias Colorretais , Oxigênio , Hipóxia Celular , Neoplasias Colorretais/patologia , Glucose/metabolismo , Glicólise , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactatos , Oxigênio/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Ribossomos/patologia , Fator 1 Associado a Receptor de TNF/metabolismo
6.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466447

RESUMO

Epigenetics is involved in tumor progression and drug resistance in human colorectal carcinoma (CRC). This study addressed the hypothesis that the DNA methylation profiling may predict the clinical behavior of metastatic CRCs (mCRCs). The global methylation profile of two human mCRC subgroups with significantly different outcome was analyzed and compared with gene expression and methylation data from The Cancer Genome Atlas COlon ADenocarcinoma (TCGA COAD) and the NCBI GENE expression Omnibus repository (GEO) GSE48684 mCRCs datasets to identify a prognostic signature of functionally methylated genes. A novel epigenetic signature of eight hypermethylated genes was characterized that was able to identify mCRCs with poor prognosis, which had a CpG-island methylator phenotype (CIMP)-high and microsatellite instability (MSI)-like phenotype. Interestingly, methylation events were enriched in genes located on the q-arm of chromosomes 13 and 20, two chromosomal regions with gain/loss alterations associated with adenoma-to-carcinoma progression. Finally, the expression of the eight-genes signature and MSI-enriching genes was confirmed in oxaliplatin- and irinotecan-resistant CRC cell lines. These data reveal that the hypermethylation of specific genes may provide prognostic information that is able to identify a subgroup of mCRCs with poor prognosis.

7.
Histol Histopathol ; 35(1): 25-37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31322279

RESUMO

Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.


Assuntos
Proteínas de Choque Térmico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas/citologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Chaperonina 60/metabolismo , Transição Epitelial-Mesenquimal , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fenótipo , Processos Estocásticos , Microambiente Tumoral
8.
Mol Cell Endocrinol ; 502: 110676, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812782

RESUMO

Thyroid cancer is the most common endocrine malignancy, with well-differentiated subtypes characterized by an excellent prognosis due to their optimal sensitivity to standard therapies whereas poorly differentiated and anaplastic tumours by chemo/radio-resistance and unfavourable outcome. Heat Shock Proteins (HSPs) are molecular chaperones overexpressed in thyroid malignancies and involved in crucial functions responsible for thyroid carcinogenesis, as protection from apoptosis, drug resistance and cell migration. Thus, HSPs inhibitors have been proposed as novel therapeutic agents in thyroid cancer to revert molecular mechanisms of tumour progression. In this review, we report an overview on the biological role of HSPs, and specifically HSP90s, in thyroid cancer and their potential involvement as biomarkers. We discuss the rationale to evaluate HSPs inhibitors as innovative anticancer agents in specific subtypes of thyroid cancer characterized by poor response to therapies with the objective to target single family chaperones to reduce, simultaneously, the expression/stability of multiple client proteins.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico/genética , Humanos , Terapia de Alvo Molecular , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Mol Oncol ; 14(12): 3030-3047, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025742

RESUMO

Metabolic rewiring is a mechanism of adaptation to unfavorable environmental conditions and tumor progression. TRAP1 is an HSP90 molecular chaperone upregulated in human colorectal carcinomas (CRCs) and responsible for downregulation of oxidative phosphorylation (OXPHOS) and adaptation to metabolic stress. The mechanism by which TRAP1 regulates glycolytic metabolism and the relevance of this regulation in resistance to EGFR inhibitors were investigated in patient-derived CRC spheres, human CRC cells, samples, and patients. A linear correlation was observed between TRAP1 levels and 18 F-fluoro-2-deoxy-glucose (18 F-FDG) uptake upon PET scan or GLUT1 expression in human CRCs. Consistently, TRAP1 enhances GLUT1 expression, glucose uptake, and lactate production and downregulates OXPHOS in CRC patient-derived spheroids and cell lines. Mechanistically, TRAP1 maximizes lactate production to balance low OXPHOS through the regulation of the glycolytic enzyme phosphofructokinase-1 (PFK1); this depends on the interaction between TRAP1 and PFK1, which favors PFK1 glycolytic activity and prevents its ubiquitination/degradation. By contrast, TRAP1/PFK1 interaction is lost in conditions of enhanced OXPHOS, which results in loss of TRAP1 regulation of PFK1 activity and lactate production. Notably, TRAP1 regulation of glycolysis is involved in resistance of RAS-wild-type CRCs to EGFR monoclonals. Indeed, either TRAP1 upregulation or high glycolytic metabolism impairs cetuximab activity in vitro, whereas TRAP1 targeting and/or inhibition of glycolytic pathway enhances cell response to cetuximab. Finally, a linear correlation between 18 F-FDG PET uptake and poor response to cetuximab in first-line therapy in human metastatic CRCs was observed. These results suggest that TRAP1 is a key determinant of CRC metabolic rewiring and favors resistance to EGFR inhibitors through regulation of glycolytic metabolism.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP90/metabolismo , Fosfofrutoquinase-1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Efeito Warburg em Oncologia , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Cetuximab/farmacologia , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Fluordesoxiglucose F18/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Fenótipo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Efeito Warburg em Oncologia/efeitos dos fármacos
10.
Cells ; 9(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235572

RESUMO

Despite initial chemotherapy response, ovarian cancer is the deadliest gynecologic cancer, due to frequent relapse and onset of drug resistance. To date, there is no affordable diagnostic/prognostic biomarker for early detection of the disease. However, it has been recently shown that high grade serous ovarian cancers show peculiar oxidative metabolism, which is in turn responsible for inflammatory response and drug resistance. The molecular chaperone TRAP1 plays pivotal roles in such metabolic adaptations, due to the involvement in the regulation of mitochondrial respiration. Here, we show that platinum-resistant ovarian cancer cells also show reduced cholesterol biosynthesis, and mostly rely on the uptake of exogenous cholesterol for their needs. Expression of FDPS and OSC, enzymes involved in cholesterol synthesis, are decreased both in drug-resistant cells and upon TRAP1 silencing, whereas the expression of LDL receptor, the main mediator of extracellular cholesterol uptake, is increased. Strikingly, treatment with statins to inhibit cholesterol synthesis reduces cisplatin-induced apoptosis, whereas silencing of LIPG, an enzyme involved in lipid metabolism, or withdrawal of lipids from the culture medium, increases sensitivity to the drug. These results suggest caveats for the use of statins in ovarian cancer patients and highlights the importance of lipid metabolism in ovarian cancer treatment.


Assuntos
Colesterol/metabolismo , Cisplatino/uso terapêutico , Homeostase , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos
11.
Bioelectrochemistry ; 129: 135-143, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158798

RESUMO

A new and highly selective amperometric biosensor able to analyse choline in clinical samples from patients suffering from renal diseases and receiving repetitive haemodialysis treatment is described. The proposed biosensor is based on choline oxidase immobilized by co-crosslinking onto a novel anti-fouling and anti-interferent membrane. Between the several polymeric films electrosynthesized on a Pt electrode whose permselective behaviours were here investigated, those based on overoxidized polypyrrole/poly(o-aminophenol) bilayer revealed the most effective in rejecting common interferents usually present in biological fluids. The so realized biosensor showed notably analytical performances, displaying linear choline responses up to 100 µM, a sensitivity of 156 nA mM-1 mm-2 and a limit of detection, calculated at a signal-to-noise ratio equal to 3, of 1 µM; further, the within-a-day coefficients of variation for replicate (n = 3) were 2.7% and 1.2% at 100 µM and 10 µM choline levels, respectively. The remarkable performances and anti-interference behaviour allowed us the use of the proposed biosensor for the selective and fouling-free detection of choline in dialysate coming from patients on haemodialysis and even in their unpretreated human sera. Preliminary results gave choline levels in good agreement with the expected values.


Assuntos
Alcaligenes/enzimologia , Oxirredutases do Álcool/química , Técnicas Biossensoriais/métodos , Colina/sangue , Membranas Artificiais , Polímeros/química , Pirróis/química , Colina/análise , Soluções para Diálise/análise , Enzimas Imobilizadas/química , Humanos , Limite de Detecção , Diálise Renal
12.
Cancers (Basel) ; 11(9)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540406

RESUMO

The Kirsten rat sarcoma viral oncogene homolog (RAS)/v-raf-1 murine leukemia viral oncogene homolog 1 (RAF)/mitogen-activated protein kinase 1 (MAPK) signaling cascade is the most important oncogenic pathway in human cancers. Tumors leading mutations in the gene encoding for v-raf murine sarcoma viral oncogene homolog B (BRAF) serine-threonine kinase are reliant on the MAPK signaling pathway for their growth and survival. Indeed, the constitutive activation of MAPK pathway results in continuous stimulation of cell proliferation, enhancement of the apoptotic threshold and induction of a migratory and metastatic phenotype. In a clinical perspective, this scenario opens to the possibility of targeting BRAF pathway for therapy. Thyroid carcinomas (TCs) bearing BRAF mutations represent approximately 29-83% of human thyroid malignancies and, differently from melanomas, are less sensitive to BRAF inhibitors and develop primary or acquired resistance due to mutational events or activation of alternative signaling pathways able to reactivate ERK signaling. In this review, we provide an overview on the current knowledge concerning the mechanisms leading to resistance to BRAF inhibitors in human thyroid carcinomas and discuss the potential therapeutic strategies, including combinations of BRAF inhibitors with other targeted agents, which might be employed to overcome drug resistance and potentiate the activity of single agent BRAF inhibitors.

13.
Cells ; 8(8)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366176

RESUMO

Cancer has been considered, for a long time, a genetic disease where mutations in keyregulatory genes drive tumor initiation, growth, metastasis, and drug resistance. Instead, theadvent of high-throughput technologies has revolutionized cancer research, allowing to investigatemolecular alterations at multiple levels, including genome, epigenome, transcriptome, proteome,and metabolome and showing the multifaceted aspects of this disease. The multi-omics approachesrevealed an intricate molecular landscape where different cellular functions are interconnected andcooperatively contribute to shaping the malignant phenotype. Recent evidence has brought to lighthow metabolism and epigenetics are highly intertwined, and their aberrant crosstalk can contributeto tumorigenesis. The oncogene-driven metabolic plasticity of tumor cells supports the energeticand anabolic demands of proliferative tumor programs and secondary can alter the epigeneticlandscape via modulating the production and/or the activity of epigenetic metabolites. Conversely,epigenetic mechanisms can regulate the expression of metabolic genes, thereby altering themetabolome, eliciting adaptive responses to rapidly changing environmental conditions, andsustaining malignant cell survival and progression in hostile niches. Thus, cancer cells takeadvantage of the epigenetics-metabolism crosstalk to acquire aggressive traits, promote cellproliferation, metastasis, and pluripotency, and shape tumor microenvironment. Understandingthis bidirectional relationship is crucial to identify potential novel molecular targets for theimplementation of robust anti-cancer therapeutic strategies.


Assuntos
Epigênese Genética , Neoplasias/genética , Neoplasias/metabolismo , Sobrevivência Celular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Metabolismo Secundário , Microambiente Tumoral
14.
Cells ; 8(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163702

RESUMO

Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Progressão da Doença , Epigênese Genética , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Humanos , Neoplasias/genética , Fenótipo
15.
Talanta ; 154: 438-45, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154697

RESUMO

A Laccase-based biosensor for the determination of phenolic compounds was developed by using Matrix Assisted Pulsed Laser Evaporation as an innovative enzyme immobilization technique. and the deriving biosensor was characterized and applied for the first time. Laccase was immobilized onto different substrates including screen printed carbon electrodes and spectroscopic, morphologic and electrochemical characterizations were carried out. A linear range from 1 to 60µM was achieved working at 5.5pH and -0.2V detection potential vs Ag pseudoreference. The limits of detection and quantification were found to be 1 and 5µM, respectively. A good fabrication reproducibility, stability of response and selectivity toward interferents were also found The potential of the developed biosensor was tested in the determination of total polyphenol content in real matrices (tea infusion, ethanolic extract from Muscari comosum bulbs and aqueous solution of a food supplement from black radish root and artichoke leaves) and the results were compared with those obtained by using the Folin-Ciocalteu method.


Assuntos
Técnicas Biossensoriais , Eletrodos , Enzimas Imobilizadas , Lacase , Reprodutibilidade dos Testes , Volatilização
16.
Folia Microbiol (Praha) ; 61(1): 1-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26016849

RESUMO

The aim of this study was a reliable intra-species discrimination and strain biodiversity in Oenococcus oeni populations of two different Aglianico wineries by molecular, biochemical, and physiological characterization. Pulsed field gel electrophoresis (PFGE) analysis revealed a high polymorphism related to the origin (winery) of strains, while differential display PCR (DD-PCR) allowed a further discrimination of strains from the same winery. Moreover, the heterogeneity of these natural populations was investigated by capillary electrophoresis and enzymatic assays. A variability related to a different surface charge distribution was observed among strains, linked to their origin. Malolactic activity study evidenced strain-specific differences in malic acid degradation, and then, only the presence of L(-)-malic acid in the medium induced the mle gene. This study provided evidences on the importance of intra-species biodiversity of malolactic bacterial populations in wine ecosystems, as each wine possess peculiar winemaking conditions and physical-chemical properties which make specific the bacterial survival and growth. This study highlighted a great biodiversity among O. oeni strains that can be also winery specific. Such biodiversity within a certain winery and winemaking area is important for selecting malolactic starters, and strain-specific trait identification is especially important to match individual strains to specific industrial process.


Assuntos
Biodiversidade , Oenococcus/classificação , Oenococcus/isolamento & purificação , Polimorfismo Genético , Vinho/microbiologia , Malatos/metabolismo , Tipagem Molecular , Oenococcus/genética , Oenococcus/fisiologia
17.
Food Chem ; 169: 13-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25236192

RESUMO

Lysine quantification in cheese by a novel, highly selective amperometric biosensor is reported. Based on l-lysine-α-oxidase immobilized by co-crosslinking onto Platinum (Pt) electrodes modified by overoxidized polypyrrole, the sensor proved almost specific to lysine, sensitive and stable. The pure enzymatic nature of current signals was confirmed by a control electrode modified without enzyme. The precision of the method showed relative standard deviations of 4.7% and 9.2% respectively for Parmigiano Reggiano and Grana Padano cheese (n=5). The recovery data on various cheese, spiked with lysine at 50-100% of the measured content, ranged from 85% to 99%. Different types of cheese were analysed showing lysine concentrations related to the ripening time and the manufacture technology, in agreement with literature data. Within dairy products, no appreciable lysine was detected in yogurts. The method adopted revealed suited to satisfy the demands for precise and sensitive detection of lysine with minimal sample preparation and clean-up.


Assuntos
Técnicas Biossensoriais/métodos , Queijo/análise , Lisina/análise , Aminoácido Oxirredutases/química , Técnicas Biossensoriais/instrumentação , Eletrodos , Polímeros/química , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA