Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 276, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486224

RESUMO

BACKGROUND: CLAD (Chronic Lung Allograft Dysfunction) remains a serious complication following lung transplantation. Some evidence shows that portions of Extracorporeal Photopheresis (ECP)-treated patients improve/stabilize their graft function. In spite of that, data concerning molecular mechanisms are still lacking. Aims of our study were to assess whether ECP effects are mediated by Mononuclear Cells (MNCs) modulation in term of microRNAs (miRNAs) expression and growth factors release. METHODS: Cells from leukapheresis of 16 CLAD patients, at time 0 and 6-months (10 cycles), were cultured for 48h ± PHA (10 ug/ml) or LPS (2 ug/ml). Expression levels of miR-146a-5p, miR-155-5p, miR-31-5p, miR181a-5p, miR-142-3p, miR-16-5p and miR-23b-5p in MNCs-exosomes were evaluated by qRT-PCR, while ELISA assessed different growth factors levels on culture supernatants. RESULTS: Our result showed miR-142-3p down-regulation (p = 0.02) in MNCs of ECP-patients after the 10 cycles and after LPS stimulation (p = 0.005). We also find miR-146a-5p up-regulation in cells after the 10 cycles stimulated with LPS (p = 0.03). Connective tissue growth factor (CTGF) levels significantly decreased in MNCs supernatant (p = 0.04). The effect of ECP is translated into frequency changes of Dendritic Cell (DC) subpopulations and a slight increase in T regulatory cells (Treg) number and a significant decrease in CTGF release. CONCLUSIONS: ECP might affect regulatory T cell functions, since both miR-142 and miR-146a have been shown to be involved in the regulation of suppressor regulatory T cell functions and DCs. On the other side ECP, possibly by regulating macrophage activation, is able to significantly down modulate CTGF release.


Assuntos
MicroRNAs , Fotoferese , Humanos , MicroRNAs/genética , Lipopolissacarídeos/farmacologia , Leucócitos , Regulação para Baixo/genética
2.
Pharmacol Res ; 192: 106796, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207738

RESUMO

Mesenchymal Stromal Cell (MSC) clinical applications have been widely reported and their therapeutic potential has been documented in several diseases. MSCs can be isolated from several human tissues and easily expanded in vitro, they are able to differentiate in a variety of cell lineages, and they are known to interact with most immunological cells, showing immunosuppressive and tissue repair properties. Their therapeutic efficacy is closely associated with the release of bioactive molecules, namely Extracellular Vesicles (EVs), effective as their parental cells. EVs isolated from MSCs act by fusing with target cell membrane and releasing their content, showing a great potential for the treatment of injured tissues and organs, and for the modulation of the host immune system. EV-based therapies provide, as major advantages, the possibility to cross the epithelium and blood barrier and their activity is not influenced by the surrounding environment. In the present review, we deal with pre-clinical reports and clinical trials to provide data in support of MSC and EV clinical efficacy with particular focus on neonatal and pediatric diseases. Considering pre-clinical and clinical data so far available, it is likely that cell-based and cell-free therapies could become an important therapeutic approach for the treatment of several pediatric diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Recém-Nascido , Criança , Humanos , Vesículas Extracelulares/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887348

RESUMO

This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours' incubation time.


Assuntos
Lipossomos , Diálise Renal , Animais , Técnicas In Vitro , Rim , Perfusão , Suínos
4.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142593

RESUMO

We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos
5.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672321

RESUMO

Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson's disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal-lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.


Assuntos
Vesículas Extracelulares/patologia , Fibroblastos/patologia , Glucosilceramidase/genética , Mutação , Doença de Parkinson/genética , Células Cultivadas , Vesículas Extracelulares/metabolismo , Glucosilceramidase/metabolismo , Humanos , Doença de Parkinson/patologia , Serina/metabolismo , alfa-Sinucleína/metabolismo
6.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143536

RESUMO

Aim of work was to locate a simple, reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited, namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size, pore orientation, porosity, and pore distribution were produced using two different techniques, such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity, seeding efficiency, and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method, as these conditions successfully improved the cellularization of polymeric patches. Furthermore, the investigation provided interesting information on patches' stability in physiological simulating experimental conditions. Considering the in vitro results, it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover, the protocol turned out to be simple, repeatable, and reproducible.


Assuntos
Materiais Biocompatíveis/química , Esôfago/patologia , Esôfago/cirurgia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Animais , Células da Medula Óssea/citologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Microscopia Eletrônica de Varredura , Poliésteres/química , Porosidade , Suínos , Temperatura , Alicerces Teciduais/química
7.
J Appl Toxicol ; 39(9): 1320-1336, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211441

RESUMO

Despite the growing interest in nanoparticles (NPs), their toxicity has not yet been defined and the development of new strategies and predictive models are required. Human stem cells (SCs) offer a promising and innovative cell-based model. Among SCs, mesenchymal SCs (MSCs) derived from cord lining membrane (CL) may represent a new species-specific tool for establishing efficient platforms for primary screening and toxicity/safety testing of NPs. Superparamagnetic iron oxide NPs, including magnetite (Fe3 O4 NPs), have aroused great public health and scientific concerns despite their extensive uses. In this study, CL-MSCs were characterized and applied for in vitro toxicity screening of Fe3 O4 NPs. Cytotoxicity, internalization/uptake, differentiation and proliferative capacity were evaluated after exposure to different Fe3 O4 NP concentrations. Data were compared with those obtained from bone marrow (BM)-MSCs. We observed, at early passages (P3), that: (1) cytotoxicity occurred at 10 µg/mL in CL-MSCs and 100 µg/mL in BM-MSCs (no differences in toxicity, between CL- and BM-MSCs, were observed at higher dosage, 100-300 µg/mL); (2) cell density decrease and monolayer features loss were affected at ≥50 µg/mL in CL-MSCs only; and (3) NP uptake was concentration-dependent in both MSCs. After 100 µg/mL Fe3 O4 NP exposures, the capacity of proliferation was decreased (P5-P9) in CL-MSCs without morphology alteration. Moreover, a progressive decrease of intracellular Fe3 O4 NPs was observed over culture time. Antigen surface expression and multilineage differentiation were not influenced. These findings suggest that CL-MSCs could be used as a reliable cell-based model for Fe3 O4 NP toxicity screening evaluation and support the use of this approach for improving the confidence degree on the safety of NPs to predict health outcomes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Técnicas In Vitro , Nanopartículas de Magnetita/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical/crescimento & desenvolvimento , Adulto , Feminino , Humanos
8.
BMC Cancer ; 18(1): 1176, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482160

RESUMO

BACKGROUND: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. METHODS: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. RESULTS: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. CONCLUSIONS: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Microambiente Tumoral , Biomarcadores Tumorais , Células da Medula Óssea/metabolismo , Fibroblastos Associados a Câncer/patologia , Ciclo Celular , Diferenciação Celular/genética , Separação Celular/métodos , Células Cultivadas , Pré-Escolar , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem/métodos , Lactente , Masculino , Mutação , Neuroblastoma/epidemiologia , Neuroblastoma/terapia , Vigilância da População , Sistema de Registros , Transdução de Sinais , Microambiente Tumoral/genética
9.
Am J Hematol ; 93(5): 615-622, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29359451

RESUMO

Splenic hematopoiesis is a major feature in the course of myelofibrosis (MF). In fact, the spleen of patients with MF contains malignant hematopoietic stem cells retaining a complete differentiation program, suggesting both a pivotal role of the spleen in maintaining the disease and a tight regulation of hematopoiesis by the splenic microenvironment, in particular by mesenchymal stromal cells (MSCs). Little is known about splenic MSCs (Sp-MSCs), both in normal and in pathological context. In this work, we have in vitro expanded and characterized Sp-MSCs from 25 patients with MF and 13 healthy subjects (HS). They shared similar phenotype, growth kinetics, and differentiation capacity. However, MF Sp-MSCs expressed significant lower levels of nestin, and favored megakaryocyte (Mk) differentiation in vitro at a larger extent than their normal counterpart. Moreover, they showed a significant upregulation of matrix metalloprotease 2 (MMP2) and fibronectin 1 (FN1) genes both at mRNA expression and at protein level, and, finally, developed genetic abnormalities which were never detected in HS-derived Sp-MSCs. Our data point toward the existence of a defective splenic niche in patients with MF that could be responsible of some pathological features of the disease, including the increased trafficking of CD34+ cells and the expansion of the megakaryocytic lineage.


Assuntos
Células-Tronco Mesenquimais/patologia , Mielofibrose Primária/patologia , Baço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34 , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Feminino , Fibronectinas/metabolismo , Hematopoese , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Megacariócitos/patologia , Pessoa de Meia-Idade , Nestina/metabolismo , Adulto Jovem
10.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732533

RESUMO

(1) Background: Numerous elements of the Mediterranean diet (MD) have antioxidant and anti-inflammatory qualities. (2) Methods: We present a narrative review of the potential benefits of the Mediterranean dietary pattern (MD) in mitigating aging-related inflammation (inflamm-aging) associated with childhood obesity. The mechanisms underlying chronic inflammation in obesity are also discussed. A total of 130 papers were included after screening abstracts and full texts. (3) Results: A complex interplay between obesity, chronic inflammation, and related comorbidities is documented. The MD emerges as a promising dietary pattern for mitigating inflammation. Studies suggest that the MD may contribute to weight control, improved lipid profiles, insulin sensitivity, and endothelial function, thereby reducing the risk of metabolic syndrome in children and adolescents with obesity. (4) Conclusions: While evidence supporting the anti-inflammatory effects of the MD in pediatric obesity is still evolving, the existing literature underscores its potential as a preventive and therapeutic strategy. However, MD adherence remains low among children and adolescents, necessitating targeted interventions to promote healthier dietary habits. Future high-quality intervention studies are necessary to elucidate the specific impact of the MD on inflammation in diverse pediatric populations with obesity and associated comorbidities.


Assuntos
Dieta Mediterrânea , Inflamação , Obesidade Infantil , Humanos , Obesidade Infantil/prevenção & controle , Criança , Inflamação/prevenção & controle , Adolescente , Envelhecimento , Síndrome Metabólica/prevenção & controle
11.
Cells ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334645

RESUMO

We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1ß and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.


Assuntos
Hemangioma , Células-Tronco Mesenquimais , Humanos , Propranolol/farmacologia , Propranolol/uso terapêutico , Propranolol/metabolismo , Transcriptoma , Células-Tronco Mesenquimais/metabolismo , Adipogenia/genética , Hemangioma/genética , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo
12.
Biomed Pharmacother ; 162: 114640, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004325

RESUMO

A subset of severe COVID19 patients develop pulmonary fibrosis, but the pathophysiology of this complication is still unclear. We previously described the possibility to isolate lung mesenchymal cells (LMC) by culturing broncho-alveolar lavage (BAL) cells from patients with pulmonary fibrosis or chronic lung allograft dysfunction. Aim of this study was to investigate the possibility to isolate and characterize LMC from BAL of patients that, two months after discharge for severe COVID19, show CT signs of post-COVID19 fibrosis (Post-COVID) and in some cases has been considered transplant indication. Results were compared with those from BAL of patients with collagen tissue disease-associated interstitial fibrosis (CTD-ILD). BAL fluid levels of TGFß, VEGF, TIMP2, RANTES, IL6, IL8, and PAI1 were assessed. LMC were cultured and expanded, phenotyped by flow cytometry, and tested for osteogenic and adipogenic differentiation. Finally, we tested immunomodulatory and proliferative capabilities, collagen I production + /- TGF-beta stimulation. BAL cytokine and growth factor levels were comparable in the two groups. Efficiency of isolation from BAL was 100% in post-COVID compared to 63% in CTD-ILD. LMC from post-COVID were positive for CD105, CD73, CD90, and negative for CD45, CD34, CD19 and HLA-DR as in CTD-ILD samples. Post-COVID LMC displayed higher collagen production with respect to CTD-ILD LMC. Immunomodulatory capacity towards lymphocytes was very low, while Post-COVID LMC significantly upregulated pro-inflammatory cytokine production by healthy PBMCs. Our preliminary data suggest that LMC from post-COVID19 fibrosis patients share several features with CTD-ILD ones but might have a higher response to fibrogenic signals and pro-inflammatory profile.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Pulmão , Fibrose , Citocinas , Fator de Crescimento Transformador beta
13.
Children (Basel) ; 10(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36670712

RESUMO

Mesenchymal stromal cells (MSCs) have been proposed as a new therapeutic strategy to treat congenital and acquired respiratory system diseases. We describe a case report of an 18-month-old male patient with progressive chronic respiratory failure, associated with mutations of the surfactant protein C gene (SFTPC) due to c.289G > T variant p.Gly97Ser (rs927644577) and c.176A > G variant (p.His59Arg), submitted to repeated intravenous infusions of allogeneic bone marrow (BM) MSCs. The clinical condition of the patient was monitored. Immunologic studies before and during MSC treatment were performed. No adverse events related to the MSC infusions were recorded. Throughout the MSC treatment period, the patient showed a growth recovery. Starting the second infusion, the patient experienced an improvement in his respiratory condition, with progressive adaptation to mechanical ventilation. After the third infusion, five hours/die of spontaneous breathing was shown, and after infusion IV, spontaneous ventilation for 24/24 h was recorded. A gradual decrease of lymphocytes and cell subpopulations was observed. No variations in the in vitro T cell response to PHA were determined by MSC treatment as well as for the in vitro B cell response. A decrease in IFN-γ, TNF-α, and IL-10 levels was also detected. Even though we cannot exclude an improvement of pulmonary function due to the physiological maturation, the well-known action of MSCs in the repair of lung tissue, together with the sequence of events observed in our patient, may support the therapeutic role of MSCs in this clinical condition. However, further investigations are necessary to confirm the result and long-term follow-up will be mandatory to confirm the benefits on the pulmonary condition.

14.
Biomed Mater ; 19(1)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992318

RESUMO

Bioprinting offers new opportunities to obtain reliable 3Din vitromodels of the liver for testing new drugs and studying pathophysiological mechanisms, thanks to its main feature in controlling the spatial deposition of cell-laden hydrogels. In this context, decellularized extracellular matrix (dECM)-based hydrogels have caught more and more attention over the last years because of their characteristic to closely mimic the tissue-specific microenvironment from a biological point of view. In this work, we describe a new concept of designing dECM-based hydrogels; in particular, we set up an alternative and more practical protocol to develop a hepatic lyophilized dECM (lyo-dECM) powder as an 'off-the-shelf' and free soluble product to be incorporated as a biomimetic component in the design of 3D-printable hybrid hydrogels. To this aim, the powder was first characterized in terms of cytocompatibility on human and porcine mesenchymal stem cells (MSCs), and the optimal powder concentration (i.e. 3.75 mg ml-1) to use in the hydrogel formulation was identified. Moreover, its non-immunogenicity and capacity to reactivate the elastase enzyme potency was proved. Afterward, as a proof-of-concept, the powder was added to a sodium alginate/gelatin blend, and the so-defined multi-component hydrogel was studied from a rheological point of view, demonstrating that adding the lyo-dECM powder at the selected concentration did not alter the viscoelastic properties of the original material. Then, a printing assessment was performed with the support of computational simulations, which were useful to definea priorithe hydrogel printing parameters as window of printability and its post-printing mechanical collapse. Finally, the proposed multi-component hydrogel was bioprinted with cells inside, and its post-printing cell viability for up to 7 d was successfully demonstrated.


Assuntos
Bioimpressão , Matriz Extracelular , Suínos , Animais , Humanos , Pós , Hidrogéis , Biomimética , Impressão Tridimensional , Fígado , Bioimpressão/métodos , Alicerces Teciduais , Engenharia Tecidual
15.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347462

RESUMO

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Chlorocebus aethiops , Humanos , Células Vero , Autoanticorpos , Anticorpos Antivirais , Interferon-alfa
16.
Pharmaceutics ; 14(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213985

RESUMO

Acquired congenital esophageal malformations, such as malignant esophageal cancer, require esophagectomy resulting in full thickness resection, which cannot be left untreated. The proposed approach is a polymeric full-thickness scaffold engineered with mesenchymal stem cells (MSCs) to promote and speed up the regeneration process, ensuring adequate support and esophageal tissue reconstruction and avoiding the use of autologous conduits. Copolymers poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) 70:30 and 85:15 ratio were chosen to prepare electrospun tubular scaffolds. Electrospinning apparatus equipped with two different types of tubular mandrels: cylindrical (∅ 10 mm) and asymmetrical (∅ 10 mm and ∅ 8 mm) were used. Tubular scaffolds underwent morphological, mechanical (uniaxial tensile stress) and biological (MTT and Dapi staining) characterization. Asymmetric tubular geometry resulted in the best properties and was selected for in vivo surgical implantation. Anesthetized pigs underwent full thickness circumferential resection of the mid-lower thoracic esophagus, followed by implantation of the asymmetric scaffold. Preliminary in vivo results demonstrated that detached stitch suture achieved better results in terms of animal welfare and scaffold integration; thus, it is to be preferred to continuous suture.

17.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36612020

RESUMO

Neuroblastoma tumor-associated mesenchymal stromal cells (NB-TA-MSC) have been extensively characterized for their pro-tumorigenic properties, while their immunosuppressive potential, especially against NK cells, has not been thoroughly investigated. Herein, we study the immune-regulatory potential of six primary young and senescent NB-TA-MSC on NK cell function. Young cells display a phenotype (CD105+/CD90+/CD73+/CD29+/CD146+) typical of MSC cells and, in addition, express high levels of immunomodulatory molecules (MHC-I, PDL-1 and PDL-2 and transcriptional-co-activator WWTR1), able to hinder NK cell activity. Notably, four of them express the neuroblastoma marker GD2, the most common target for NB immunotherapy. From a functional point of view, young NB-TA-MSC, contrary to the senescent ones, are resistant to activated NK cell-mediated lysis, but this behavior is overcome using anti-CD105 antibody TRC105 that activates antibody-dependent cell-mediated cytotoxicity. In addition, proliferating NB-TA-MSC, but not the senescent ones, after six days of co-culture, inhibit proliferation, expression of activating receptors and cytolytic activity of freshly isolated NK. Inhibitors of the soluble immunosuppressive factors L-kynurenine and prostaglandin E2 efficiently counteract this latter effect. Our data highlight the presence of phenotypically heterogeneous NB-TA-MSC displaying potent immunoregulatory properties towards NK cells, whose inhibition could be mandatory to improve the antitumor efficacy of targeted immunotherapy.

18.
Biomedicines ; 10(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359336

RESUMO

BACKGROUND: In end-stage chronic liver disease, transplantation represents the only curative option. However, the shortage of donors results in the death of many patients. To overcome this gap, it is mandatory to develop new therapeutic options. In the present study, we decellularised pig livers and reseeded them with allogeneic porcine mesenchymal stromal cells (pMSCs) to understand whether extracellular matrix (ECM) can influence and/or promote differentiation into hepatocyte-like cells (HLCs). METHODS: After decellularisation with SDS, the integrity of ECM-scaffolds was examined by histological staining, immunofluorescence and scanning electron microscope. DNA quantification was used to assess decellularisation. pMSCs were plated on scaffolds by static seeding and maintained in in vitro culture for 21 days. At 3, 7, 14 and 21 days, seeded ECM scaffolds were evaluated for cellular adhesion and growth. Moreover, the expression of specific hepatic genes was performed by RT-PCR. RESULTS: The applied decellularisation/recellularisation protocol was effective. The number of seeded pMSCs increased over the culture time points. Gene expression analysis of seeded pMSCs displayed a weak induction due to ECM towards HLCs. CONCLUSIONS: These results suggest that ECM may address pMSCs to differentiate in hepatocyte-like cells. However, only contact with liver-ECM is not enough to induce complete differentiation.

20.
Children (Basel) ; 8(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199040

RESUMO

In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA