Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649227

RESUMO

The population structure of social species has important consequences for both their demography and transmission of their pathogens. We develop a metapopulation model that tracks two key components of a species' social system: average group size and number of groups within a population. While the model is general, we parameterize it to mimic the dynamics of the Yellowstone wolf population and two associated pathogens: sarcoptic mange and canine distemper. In the initial absence of disease, we show that group size is mainly determined by the birth and death rates and the rates at which groups fission to form new groups. The total number of groups is determined by rates of fission and fusion, as well as environmental resources and rates of intergroup aggression. Incorporating pathogens into the models reduces the size of the host population, predominantly by reducing the number of social groups. Average group size responds in more subtle ways: infected groups decrease in size, but uninfected groups may increase when disease reduces the number of groups and thereby reduces intraspecific aggression. Our modeling approach allows for easy calculation of prevalence at multiple scales (within group, across groups, and population level), illustrating that aggregate population-level prevalence can be misleading for group-living species. The model structure is general, can be applied to other social species, and allows for a dynamic assessment of how pathogens can affect social structure and vice versa.


Assuntos
Cinomose , Modelos Biológicos , Escabiose , Lobos , Animais , Cinomose/epidemiologia , Cinomose/transmissão , Dinâmica Populacional , Prevalência , Escabiose/epidemiologia , Escabiose/transmissão , Escabiose/veterinária
2.
Ecol Lett ; 25(8): 1760-1782, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35791088

RESUMO

Pathogen transmission depends on host density, mobility and contact. These components emerge from host and pathogen movements that themselves arise through interactions with the surrounding environment. The environment, the emergent host and pathogen movements, and the subsequent patterns of density, mobility and contact form an 'epidemiological landscape' connecting the environment to specific locations where transmissions occur. Conventionally, the epidemiological landscape has been described in terms of the geographical coordinates where hosts or pathogens are located. We advocate for an alternative approach that relates those locations to attributes of the local environment. Environmental descriptions can strengthen epidemiological forecasts by allowing for predictions even when local geographical data are not available. Environmental predictions are more accessible than ever thanks to new tools from movement ecology, and we introduce a 'movement-pathogen pace of life' heuristic to help identify aspects of movement that have the most influence on spatial epidemiology. By linking pathogen transmission directly to the environment, the epidemiological landscape offers an efficient path for using environmental information to inform models describing when and where transmission will occur.


Assuntos
Transmissão de Doença Infecciosa , Ecologia , Epidemiologia , Movimento , Geografia
3.
Ecol Appl ; 32(5): e2600, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35343018

RESUMO

Novel approaches to quantifying density and distributions could help biologists adaptively manage wildlife populations, particularly if methods are accurate, consistent, cost-effective, rapid, and sensitive to change. Such approaches may also improve research on interactions between density and processes of interest, such as disease transmission across multiple populations. We assess how satellite imagery, unmanned aerial system (UAS) imagery, and Global Positioning System (GPS) collar data vary in characterizing elk density, distribution, and count patterns across times with and without supplemental feeding at the National Elk Refuge (NER) in the US state of Wyoming. We also present the first comparison of satellite imagery data with traditional counts for ungulates in a temperate system. We further evaluate seven different aggregation metrics to identify the most consistent and sensitive metrics for comparing density and distribution across time and populations. All three data sources detected higher densities and aggregation locations of elk during supplemental feeding than non-feeding at the NER. Kernel density estimates (KDEs), KDE polygon areas, and the first quantile of interelk distances detected differences with the highest sensitivity and were most highly correlated across data sources. Both UAS and satellite imagery provide snapshots of density and distribution patterns of most animals in the area at lower cost than GPS collars. While satellite-based counts were lower than traditional counts, aggregation metrics matched those from UAS and GPS data sources when animals appeared in high contrast to the landscape, including brown elk against new snow in open areas. UAS counts of elk were similar to traditional ground-based counts on feed grounds and are the best data source for assessing changes in small spatial extents. Satellite, UAS, or GPS data can provide appropriate data for assessing density and changes in density from adaptive management actions. For the NER, where high elk densities are beneath controlled airspace, GPS collar data will be most useful for evaluating how management actions, including changes in the dates of supplemental feeding, influence elk density and aggregation across large spatial extents. Using consistent and sensitive measures of density may improve research on the drivers and effects of density within and across a wide range of species.


Assuntos
Cervos , Animais , Animais Selvagens , Sistemas de Informação Geográfica , Imagens de Satélites , Neve
4.
J Anim Ecol ; 91(7): 1373-1384, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994978

RESUMO

Predators may create healthier prey populations by selectively removing diseased individuals. Predators typically prefer some ages of prey over others, which may, or may not, align with those prey ages that are most likely to be diseased. The interaction of age-specific infection and predation has not been previously explored and likely has sizable effects on disease dynamics. We hypothesize that predator cleansing effects will be greater when the disease and predation occur in the same prey age groups. We examine the predator cleansing effect using a model where both vulnerability to predators and pathogen prevalence vary with age. We tailor this model to chronic wasting disease (CWD) in mule deer and elk populations in the Greater Yellowstone Ecosystem, with empirical data from Yellowstone grey wolves and cougars. Model results suggest that under moderate, yet realistic, predation pressure from cougars and wolves independently, predators may decrease CWD outbreak size substantially and delay the accumulation of symptomatic deer and elk. The magnitude of this effect is driven by the ability of predators to selectively remove late-stage CWD infections that are likely the most responsible for transmission, but this may not be the age class they typically select. Thus, predators that select for infected young adults over uninfected juveniles have a stronger cleansing effect, and these effects are strengthened when transmission rates increase with increasing prey morbidity. There are also trade-offs from a management perspective-that is, increasing predator kill rates can result in opposing forces on prey abundance and CWD prevalence. Our modelling exploration shows that predators have the potential to reduce prevalence in prey populations when prey age and disease severity are considered, yet the strength of this effect is influenced by predators' selection for demography or body condition. Current CWD management focuses on increasing cervid hunting as the primary management tool, and our results suggest predators may also be a useful tool under certain conditions, but not necessarily without additional impacts on host abundance and demography. Protected areas with predator populations will play a large role in informing the debate over predator impacts on disease.


Assuntos
Cervos , Lobos , Fatores Etários , Animais , Doença Crônica , Ecossistema , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório
5.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34311513

RESUMO

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Assuntos
Sistema Digestório , Ruminantes , Animais , Tamanho Corporal
6.
J Anim Ecol ; 90(5): 1264-1275, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630313

RESUMO

Wildlife migrations provide important ecosystem services, but they are declining. Within the Greater Yellowstone Ecosystem (GYE), some elk Cervus canadensis herds are losing migratory tendencies, which may increase spatiotemporal overlap between elk and livestock (domestic bison Bison bison and cattle Bos taurus), potentially exacerbating pathogen transmission risk. We combined disease, movement, demographic and environmental data from eight elk herds in the GYE to examine the differential risk of brucellosis transmission (through aborted foetuses) from migrant and resident elk to livestock. For both migrants and residents, we found that transmission risk from elk to livestock occurred almost exclusively on private ranchlands as opposed to state or federal grazing allotments. Weather variability affected the estimated distribution of spillover risk from migrant elk to livestock, with a 7%-12% increase in migrant abortions on private ranchlands during years with heavier snowfall. In contrast, weather variability did not affect spillover risk from resident elk. Migrant elk were responsible for the majority (68%) of disease spillover risk to livestock because they occurred in greater numbers than resident elk. On a per-capita basis, however, our analyses suggested that resident elk disproportionately contributed to spillover risk. In five of seven herds, we estimated that the per-capita spillover risk was greater from residents than from migrants. Averaged across herds, an individual resident elk was 23% more likely than an individual migrant elk to abort on private ranchlands. Our results demonstrate links between migration behaviour, spillover risk and environmental variability, and highlight the utility of integrating models of pathogen transmission and host movement to generate new insights about the role of migration in disease spillover risk. Furthermore, they add to the accumulating body of evidence across taxa that suggests that migrants and residents should be considered separately during investigations of wildlife disease ecology. Finally, our findings have applied implications for elk and brucellosis in the GYE. They suggest that managers should prioritize actions that maintain spatial separation of elk and livestock on private ranchlands during years when snowpack persists into the risk period.


Assuntos
Brucelose , Doenças dos Bovinos , Cervos , Animais , Animais Selvagens , Brucella abortus , Bovinos , Ecossistema
7.
J Anim Ecol ; 90(1): 87-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32654133

RESUMO

The spatial organization of a population can influence the spread of information, behaviour and pathogens. Group territory size and territory overlap and components of spatial organization, provide key information as these metrics may be indicators of habitat quality, resource dispersion, contact rates and environmental risk (e.g. indirectly transmitted pathogens). Furthermore, sociality and behaviour can also shape space use, and subsequently, how space use and habitat quality together impact demography. Our study aims to identify factors shaping the spatial organization of wildlife populations and assess the impact of epizootics on space use. We further aim to explore the mechanisms by which disease perturbations could cause changes in spatial organization. Here we assessed the seasonal spatial organization of Serengeti lions and Yellowstone wolves at the group level. We use network analysis to describe spatial organization and connectivity of social groups. We then examine the factors predicting mean territory size and mean territory overlap for each population using generalized additive models. We demonstrate that lions and wolves were similar in that group-level factors, such as number of groups and shaped spatial organization more than population-level factors, such as population density. Factors shaping territory size were slightly different than factors shaping territory overlap; for example, wolf pack size was an important predictor of territory overlap, but not territory size. Lion spatial networks were more highly connected, while wolf spatial networks varied seasonally. We found that resource dispersion may be more important for driving territory size and overlap for wolves than for lions. Additionally, canine distemper epizootics may have altered lion spatial organization, highlighting the importance of including infectious disease epizootics in studies of behavioural and movement ecology. We provide insight about when we might expect to observe the impacts of resource dispersion, disease perturbations, and other ecological factors on spatial organization. Our work highlights the importance of monitoring and managing social carnivore populations at the group level. Future research should elucidate the complex relationships between demographics, social and spatial structure, abiotic and biotic conditions and pathogen infections.


Assuntos
Carnívoros , Leões , Lobos , Animais , Ecossistema , Estações do Ano
8.
Proc Natl Acad Sci U S A ; 114(16): 4165-4170, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373567

RESUMO

Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.


Assuntos
Doenças Transmissíveis/epidemiologia , Surtos de Doenças/veterinária , Suscetibilidade a Doenças , Modelos Teóricos , Rede Social , Animais , Comportamento Animal , Densidade Demográfica
9.
PLoS Biol ; 14(4): e1002448, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27100532

RESUMO

The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation--especially along the veterinary/ecological research interface--remains.


Assuntos
Comportamento Cooperativo , Editoração
10.
Proc Biol Sci ; 285(1887)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232156

RESUMO

Ecologists regularly use animal contact networks to describe interactions underlying pathogen transmission, gene flow, and information transfer. However, empirical descriptions of contact often overlook some features of individual movement, and decisions about what kind of network to use in a particular setting are commonly ad hoc Here, we relate individual movement trajectories to contact networks through a tripartite network model of individual, space, and time nodes. Most networks used in animal contact studies (e.g. individual association networks, home range overlap networks, and spatial networks) are simplifications of this tripartite model. The tripartite structure can incorporate a broad suite of alternative ecological metrics like home range sizes and patch occupancy patterns into inferences about contact network metrics such as modularity and degree distribution. We demonstrate the model's utility with two simulation studies using alternative forms of ecological data to constrain the tripartite network's structure and inform expectations about the harder-to-measure metrics related to contact.


Assuntos
Comportamento Animal , Modelos Biológicos , Movimento , Animais , Simulação por Computador , Ecologia/métodos , Comportamento de Retorno ao Território Vital , Análise Espaço-Temporal
11.
Ecol Lett ; 20(3): 275-292, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28090753

RESUMO

Our ability to infer unobservable disease-dynamic processes such as force of infection (infection hazard for susceptible hosts) has transformed our understanding of disease transmission mechanisms and capacity to predict disease dynamics. Conventional methods for inferring FOI estimate a time-averaged value and are based on population-level processes. Because many pathogens exhibit epidemic cycling and FOI is the result of processes acting across the scales of individuals and populations, a flexible framework that extends to epidemic dynamics and links within-host processes to FOI is needed. Specifically, within-host antibody kinetics in wildlife hosts can be short-lived and produce patterns that are repeatable across individuals, suggesting individual-level antibody concentrations could be used to infer time since infection and hence FOI. Using simulations and case studies (influenza A in lesser snow geese and Yersinia pestis in coyotes), we argue that with careful experimental and surveillance design, the population-level FOI signal can be recovered from individual-level antibody kinetics, despite substantial individual-level variation. In addition to improving inference, the cross-scale quantitative antibody approach we describe can reveal insights into drivers of individual-based variation in disease response, and the role of poorly understood processes such as secondary infections, in population-level dynamics of disease.


Assuntos
Coiotes , Patos , Métodos Epidemiológicos/veterinária , Gansos , Influenza Aviária/epidemiologia , Peste/veterinária , Doenças das Aves Domésticas/epidemiologia , Fatores Etários , Animais , Anticorpos Antivirais/análise , Simulação por Computador , Estudos Transversais , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Estudos Longitudinais , Territórios do Noroeste/epidemiologia , Peste/epidemiologia , Peste/microbiologia , Doenças das Aves Domésticas/virologia , Prevalência , Medição de Risco/métodos , Estudos Soroepidemiológicos , Yersinia pestis/fisiologia
12.
J Anim Ecol ; 86(4): 908-920, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28317104

RESUMO

Understanding both contact and probability of transmission given contact are key to managing wildlife disease. However, wildlife disease research tends to focus on contact heterogeneity, in part because the probability of transmission given contact is notoriously difficult to measure. Here, we present a first step towards empirically investigating the probability of transmission given contact in free-ranging wildlife. We used measured contact networks to test whether bighorn sheep demographic states vary systematically in infectiousness or susceptibility to Mycoplasma ovipneumoniae, an agent responsible for bighorn sheep pneumonia. We built covariates using contact network metrics, demographic information and infection status, and used logistic regression to relate those covariates to lamb survival. The covariate set contained degree, a classic network metric describing node centrality, but also included covariates breaking the network metrics into subsets that differentiated between contacts with yearlings, ewes with lambs, and ewes without lambs, and animals with and without active infections. Yearlings, ewes with lambs, and ewes without lambs showed similar group membership patterns, but direct interactions involving touch occurred at a rate two orders of magnitude higher between lambs and reproductive ewes than between any classes of adults or yearlings, and one order of magnitude higher than direct interactions between multiple lambs. Although yearlings and non-reproductive bighorn ewes regularly carried M. ovipneumoniae, our models suggest that a contact with an infected reproductive ewe had approximately five times the odds of producing a lamb mortality event of an identical contact with an infected dry ewe or yearling. Consequently, management actions targeting infected animals might lead to unnecessary removal of young animals that carry pathogens but rarely transmit. This analysis demonstrates a simple logistic regression approach for testing a priori hypotheses about variation in the odds of transmission given contact for free-ranging hosts, and may be broadly applicable for investigations in wildlife disease ecology.


Assuntos
Mycoplasma ovipneumoniae/patogenicidade , Pneumonia por Mycoplasma/veterinária , Carneiro da Montanha/microbiologia , Animais , Feminino , Masculino , Pneumonia por Mycoplasma/transmissão , Dinâmica Populacional , Probabilidade , Ovinos , Doenças dos Ovinos
13.
Ecology ; 97(10): 2593-2602, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859120

RESUMO

Ecological theory suggests that pathogens are capable of regulating or limiting host population dynamics, and this relationship has been empirically established in several settings. However, although studies of childhood diseases were integral to the development of disease ecology, few studies show population limitation by a disease affecting juveniles. Here, we present empirical evidence that disease in lambs constrains population growth in bighorn sheep (Ovis canadensis) based on 45 years of population-level and 18 years of individual-level monitoring across 12 populations. While populations generally increased (λ = 1.11) prior to disease introduction, most of these same populations experienced an abrupt change in trajectory at the time of disease invasion, usually followed by stagnant-to-declining growth rates (λ = 0.98) over the next 20 years. Disease-induced juvenile mortality imposed strong constraints on population growth that were not observed prior to disease introduction, even as adult survival returned to pre-invasion levels. Simulations suggested that models including persistent disease-induced mortality in juveniles qualitatively matched observed population trajectories, whereas models that only incorporated all-age disease events did not. We use these results to argue that pathogen persistence may pose a lasting, but under-recognized, threat to host populations, particularly in cases where clinical disease manifests primarily in juveniles.


Assuntos
Doenças dos Ovinos , Carneiro da Montanha , Animais , Animais Selvagens , Dinâmica Populacional , Crescimento Demográfico , Ovinos
14.
Oecologia ; 181(3): 695-708, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26971522

RESUMO

Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.


Assuntos
Sistemas de Informação Geográfica , Ursidae , Animais , Ecossistema , Comportamento Predatório , Telemetria
15.
J Anim Ecol ; 84(4): 999-1009, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25714466

RESUMO

Chronic infections may have negative impacts on wildlife populations, yet their effects are difficult to detect in the absence of long-term population monitoring. Brucella abortus, the bacteria responsible for bovine brucellosis, causes chronic infections and abortions in wild and domestic ungulates, but its impact on population dynamics is not well understood. We report infection patterns and fitness correlates of bovine brucellosis in African buffalo based on (1) 7 years of cross-sectional disease surveys and (2) a 4-year longitudinal study in Kruger National Park (KNP), South Africa. We then used a matrix population model to translate these observed patterns into predicted population-level effects. Annual brucellosis seroprevalence ranged from 8·7% (95% CI = 1·8-15·6) to 47·6% (95% CI = 35·1-60·1) increased with age until adulthood (>6) and varied by location within KNP. Animals were on average in worse condition after testing positive for brucellosis (F = -5·074, P < 0·0001), and infection was associated with a 2·0 (95% CI = 1·1-3·7) fold increase in mortality (χ(2)  = 2·039, P = 0·036). Buffalo in low body condition were associated with lower reproductive success (F = 2·683, P = 0·034), but there was no association between brucellosis and pregnancy or being observed with a calf. For the range of body condition scores observed in the population, the model-predicted growth rate was λ = 1·11 (95% CI = 1·02-1·21) in herds without brucellosis and λ = 1·00 (95% CI = 0·85-1·16) when brucellosis seroprevalence was 30%. Our results suggest that brucellosis infection can potentially result in reduced population growth rates, but because these effects varied with demographic and environmental conditions, they may remain unseen without intensive, longitudinal monitoring.


Assuntos
Brucella abortus/patogenicidade , Brucelose/veterinária , Búfalos/microbiologia , Fertilidade , Animais , Brucelose/epidemiologia , Brucelose/microbiologia , Estudos Transversais , Feminino , Estudos Longitudinais , Masculino , Dinâmica Populacional , Gravidez , Estudos Soroepidemiológicos , África do Sul , Análise de Sobrevida
16.
Proc Biol Sci ; 281(1797)2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25377464

RESUMO

Group living facilitates pathogen transmission among social hosts, yet temporally stable host social organizations can actually limit transmission of some pathogens. When there are few between-subpopulation contacts for the duration of a disease event, transmission becomes localized to subpopulations. The number of per capita infectious contacts approaches the subpopulation size as pathogen infectiousness increases. Here, we illustrate that this is the case during epidemics of highly infectious pneumonia in bighorn lambs (Ovis canadensis). We classified individually marked bighorn ewes into disjoint seasonal subpopulations, and decomposed the variance in lamb survival to weaning into components associated with individual ewes, subpopulations, populations and years. During epidemics, lamb survival varied substantially more between ewe-subpopulations than across populations or years, suggesting localized pathogen transmission. This pattern of lamb survival was not observed during years when disease was absent. Additionally, group sizes in ewe-subpopulations were independent of population size, but the number of ewe-subpopulations increased with population size. Consequently, although one might reasonably assume that force of infection for this highly communicable disease scales with population size, in fact, host social behaviour modulates transmission such that disease is frequency-dependent within populations, and some groups remain protected during epidemic events.


Assuntos
Comportamento Animal , Pneumonia/veterinária , Doenças dos Ovinos/transmissão , Comportamento Social , Animais , Análise Custo-Benefício , Surtos de Doenças/veterinária , Feminino , Pneumonia/epidemiologia , Pneumonia/mortalidade , Densidade Demográfica , Estações do Ano , Ovinos , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/mortalidade , Carneiro da Montanha/microbiologia , Carneiro da Montanha/fisiologia
17.
Ecol Appl ; 24(7): 1769-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-29210236

RESUMO

Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.


Assuntos
Ração Animal , Migração Animal , Cervos/fisiologia , Comportamento Alimentar , Animais , Ecossistema , Monitoramento Ambiental , Humanos , Modelos Biológicos , Wyoming
18.
J Hered ; 105(2): 173-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24336966

RESUMO

Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5' and 3' long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.


Assuntos
DNA Viral/isolamento & purificação , Cervos/virologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Genoma Viral , Animais , Análise por Conglomerados , DNA Viral/genética , Cervos/classificação , Evolução Molecular , Marcadores Genéticos , Repetições de Microssatélites , Montana , Mutagênese Insercional , Filogenia , Polimorfismo Genético , Proteínas Recombinantes , Seleção Genética , Análise de Sequência de DNA , Utah , Wyoming
19.
Ecol Evol ; 14(5): e11418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779534

RESUMO

Integrating host movement and pathogen data is a central issue in wildlife disease ecology that will allow for a better understanding of disease transmission. We examined how adult female mule deer (Odocoileus hemionus) responded behaviorally to infection with chronic wasting disease (CWD). We compared movement and habitat use of CWD-infected deer (n = 18) to those that succumbed to starvation (and were CWD-negative by ELISA and IHC; n = 8) and others in which CWD was not detected (n = 111, including animals that survived the duration of the study) using GPS collar data from two distinct populations collared in central Wyoming, USA during 2018-2022. CWD and predation were the leading causes of mortality during our study (32/91 deaths attributed to CWD and 27/91 deaths attributed to predation). Deer infected with CWD moved slower and used lower elevation areas closer to rivers in the months preceding death compared with uninfected deer that did not succumb to starvation. Although CWD-infected deer and those that died of starvation moved at similar speeds during the final months of life, CWD-infected deer used areas closer to streams with less herbaceous biomass than starved deer. These behavioral differences may allow for the development of predictive models of disease status from movement data, which will be useful to supplement field and laboratory diagnostics or when mortalities cannot be quickly retrieved to assess cause-specific mortality. Furthermore, identifying individuals who are sick before predation events could help to assess the extent to which disease mortality is compensatory with predation. Finally, infected animals began to slow down around 4 months prior to death from CWD. Our approach for detecting the timing of infection-induced shifts in movement behavior may be useful in application to other disease systems to better understand the response of wildlife to infectious disease.

20.
Ecol Appl ; 23(3): 643-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23734491

RESUMO

It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (< 1 km2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9-2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model's resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions as explanatory or predictor variables.


Assuntos
Simulação por Computador , Cervos/fisiologia , Ecossistema , Modelos Teóricos , Neve , Animais , Dinâmica Populacional , Reprodutibilidade dos Testes , Software , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA