Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6503-6516, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37772765

RESUMO

The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming, and in some recent years, the seasonal ice arch that has historically defined the polynya's northern boundary has failed to form. Both factors are deemed to alter the polynya's ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Ecossistema , Gelo , Clima , Cadeia Alimentar
2.
Glob Chang Biol ; 26(12): 6767-6786, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32885894

RESUMO

Climate warming is rapidly reshaping the Arctic cryosphere and ocean conditions, with consequences for sea ice and pelagic productivity patterns affecting the entire marine food web. To predict how ongoing changes will impact Arctic marine ecosystems, concerted effort from various disciplines is required. Here, we contribute multi-decadal reconstructions of changes in diatom production and sea-ice conditions in relation to Holocene climate and ocean conditions off northwest Greenland. Our multiproxy study includes diatoms, sea-ice biomarkers (IP25 and HBI III) and geochemical tracers (TOC [total organic carbon], TOC:TN [total nitrogen], δ13 C, δ15 N) from a sediment core record spanning the last c. 9,000 years. Our results suggest that the balance between the outflow of polar water from the Arctic, and input of Atlantic water from the Irminger Current into the West Greenland Current is a key factor in controlling sea-ice conditions, and both diatom phenology and production in northeastern Baffin Bay. Our proxy record notably shows that changes in sea-surface conditions initially forced by Neoglacial cooling were dynamically amplified by the shift in the dominant phase of the Arctic Oscillation (AO) mode that occurred at c. 3,000 yr BP, and caused drastic changes in community composition and a decline in diatom production at the study site. In the future, with projected dominant-positive AO conditions favored by Arctic warming, increased water column stratification may counteract the positive effect of a longer open-water growth season and negatively impact diatom production.


Assuntos
Ecossistema , Camada de Gelo , Regiões Árticas , Cadeia Alimentar , Groenlândia
3.
J Phycol ; 54(5): 703-719, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30014469

RESUMO

Semiautomated methods for microscopic image acquisition, image analysis, and taxonomic identification have repeatedly received attention in diatom analysis. Less well studied is the question whether and how such methods might prove useful for clarifying the delimitation of species that are difficult to separate for human taxonomists. To try to answer this question, three very similar Fragilariopsis species endemic to the Southern Ocean were targeted in this study: F. obliquecostata, F. ritscheri, and F. sublinearis. A set of 501 extended focus depth specimen images were obtained using a standardized, semiautomated microscopic procedure. Twelve diatomists independently identified these specimen images in order to reconcile taxonomic opinions and agree upon a taxonomic gold standard. Using image analyses, we then extracted morphometric features representing taxonomic characters of the target taxa. The discriminating ability of individual morphometric features was tested visually and statistically, and multivariate classification experiments were performed to test the agreement of the quantitatively defined taxa assignments with expert consensus opinion. Beyond an updated differential diagnosis of the studied taxa, our study also shows that automated imaging and image analysis procedures for diatoms are coming close to reaching a broad applicability for routine use.


Assuntos
Classificação/métodos , Curadoria de Dados , Diatomáceas/classificação
4.
Science ; 375(6576): 101-104, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34990239

RESUMO

Climate change is expected to result in smaller fish size, but the influence of fishing has made it difficult to substantiate the theorized link between size and ocean warming and deoxygenation. We reconstructed the fish community and oceanographic conditions of the most recent global warm period (last interglacial; 130 to 116 thousand years before present) by using sediments from the northern Humboldt Current system off the coast of Peru, a hotspot of small pelagic fish productivity. In contrast to the present-day anchovy-dominated state, the last interglacial was characterized by considerably smaller (mesopelagic and goby-like) fishes and very low anchovy abundance. These small fish species are more difficult to harvest and are less palatable than anchovies, indicating that our rapidly warming world poses a threat to the global fish supply.


Assuntos
Mudança Climática , Ecossistema , Peixes , Sedimentos Geológicos , Oxigênio/análise , Água do Mar , Animais , Tamanho Corporal , Peixes/anatomia & histologia , Oceano Pacífico , Paleontologia , Peru , Água do Mar/química , Temperatura
5.
Nat Commun ; 12(1): 4475, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294719

RESUMO

High Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world's northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400-4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200-1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.

6.
Nat Commun ; 10(1): 304, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659177

RESUMO

The recent thinning and retreat of Antarctic ice shelves has been attributed to both atmosphere and ocean warming. However, the lack of continuous, multi-year direct observations as well as limitations of climate and ice shelf models prevent a precise assessment on how the ocean forcing affects the fluctuations of a grounded and floating ice cap. Here we show that a +0.3-1.5 °C increase in subsurface ocean temperature (50-400 m) in the northeastern Antarctic Peninsula has driven to major collapse and recession of the regional ice shelf during both the instrumental period and the last 9000 years. Our projections following the representative concentration pathway 8.5 emission scenario from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change reveal a +0.3 °C subsurface ocean temperature warming within the coming decades that will undoubtedly accelerate ice shelf melting, including the southernmost sector of the eastern Antarctic Peninsula.

7.
Nat Commun ; 6: 6642, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25803779

RESUMO

The Mertz Glacier Polynya off George V Land, East Antarctica, is a source of Adélie Land Bottom Water, which contributes up to ~25% of the Antarctic Bottom Water. This major polynya is closely linked to the presence of the Mertz Glacier Tongue that traps pack ice upstream. In 2010, the Mertz Glacier calved a massive iceberg, deeply impacting local sea ice conditions and dense shelf water formation. Here we provide the first detailed 250-year long reconstruction of local sea ice and bottom water conditions. Spectral analysis of the data sets reveals large and abrupt changes in sea surface and bottom water conditions with a ~70-year cyclicity, associated with the Mertz Glacier Tongue calving and regrowth dynamics. Geological data and atmospheric reanalysis, however, suggest that sea ice conditions in the polynya were also very sensitive to changes in surface winds in relation to the recent intensification of the Southern Annular Mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA