Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bipolar Disord ; 25(8): 661-670, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36890661

RESUMO

OBJECTIVES: The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS: A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS: The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION: Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.


Assuntos
Transtorno Bipolar , Trimetazidina , Ratos , Humanos , Animais , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transcriptoma , Reposicionamento de Medicamentos , Leucócitos Mononucleares , Modelos Animais de Doenças
2.
Pharmacopsychiatry ; 56(1): 25-31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36170869

RESUMO

INTRODUCTION: Mood disorders are a major cause of disability, and current treatment options are inadequate for reducing the burden on a global scale. The aim of this project was to identify drugs suitable for repurposing to treat mood disorders. METHODS: This mixed-method study utilized gene expression signature technology and pharmacoepidemiology to investigate drugs that may be suitable for repurposing to treat mood disorders. RESULTS: The transcriptional effects of a combination of drugs commonly used to treat mood disorders included regulation of the steroid and terpenoid backbone biosynthesis pathways, suggesting a mechanism involving cholesterol biosynthesis, and effects on the thyroid hormone signaling pathway. Connectivity Map analysis highlighted metformin, an FDA-approved treatment for type 2 diabetes, as a drug having global transcriptional effects similar to the mood disorder drug combination investigated. In a retrospective cohort study, we found evidence that metformin is protective against the onset of mood disorders. DISCUSSION: These results provide proof-of-principle of combining gene expression signature technology with pharmacoepidemiology to identify potential novel drugs for treating mood disorders. Importantly, metformin may have utility in the treatment of mood disorders, warranting future randomized controlled trials to test its efficacy.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Transtornos do Humor/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Retrospectivos
3.
J Therm Biol ; 110: 103347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462856

RESUMO

As the world warms, understanding the fundamental mechanisms available to organisms to protect themselves from thermal stress is becoming ever more important. Heat shock proteins are highly conserved molecular chaperones which serve to maintain cellular processes during stress, including thermal extremes. Developing animals may be particularly vulnerable to elevated temperatures, but the relevance of heat shock proteins for developing altricial birds exposed to a thermal stressor has never been investigated. Here, we sought to test whether three stress-induced genes - HSPD1, HSPA2, HSP90AA1 - and two constitutively expressed genes - HSPA8, HSP90B1 - are upregulated in response to acute thermal shock in zebra finch (Taeniopygia guttata) embryos half-way through incubation. Tested on a gradient from 37.5 °C (control) to 45 °C, we found that all genes, except HSPD1, were upregulated. However, not all genes initiated upregulation at the same temperature. For all genes, the best fitting model included a correlate of developmental stage that, although it was never significant after multiple-test correction, hints that heat shock protein upregulation might increase through embryonic development. Together, these results show that altricial avian embryos are capable of upregulating a known protective mechanism against thermal stress, and suggest that these highly conserved cellular mechanisms may be a vital component of early developmental protection under climate change.


Assuntos
Proteínas de Choque Térmico , Aves Canoras , Animais , Feminino , Mudança Climática , Proteínas de Choque Térmico/genética , Temperatura
4.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375709

RESUMO

Hospital-acquired infections (HAIs) are a growing concern around the world. They contribute to increasing mortality and morbidity rates and are an economic threat. All hospital patients have the potential to contract an HAI, but those with weakened or inferior immune systems are at highest risk. Most hospital patients will contract at least one HAI, but many will contract multiple ones. Bacteria are the most common cause of HAIs and contribute to 80-90% of all HAIs, with Staphylococcus aureus, Clostridium difficile, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae accounting for the majority. Each of these bacteria are highly resistant to antibiotics and can produce a protective film, known as a biofilm, to further prevent their eradication. It has been shown that by detecting and eradicating bacteria in the environment, infection rates can be reduced. The current methods for detecting bacteria are time consuming, non-specific, and prone to false negatives or false positives. Aptamer-based biosensors have demonstrated specific, time-efficient and simple detection, highlighting the likelihood that they could be used in a similar way to detect HAI-causing bacteria.


Assuntos
Infecção Hospitalar/diagnóstico , Infecção Hospitalar/microbiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/prevenção & controle , Gerenciamento Clínico , Suscetibilidade a Doenças , Farmacorresistência Bacteriana , Humanos , Técnicas Microbiológicas , Técnicas de Diagnóstico Molecular , Sensibilidade e Especificidade
5.
Bioinformatics ; 34(16): 2870-2878, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29608657

RESUMO

Motivation: Although seldom acknowledged explicitly, count data generated by sequencing platforms exist as compositions for which the abundance of each component (e.g. gene or transcript) is only coherently interpretable relative to other components within that sample. This property arises from the assay technology itself, whereby the number of counts recorded for each sample is constrained by an arbitrary total sum (i.e. library size). Consequently, sequencing data, as compositional data, exist in a non-Euclidean space that, without normalization or transformation, renders invalid many conventional analyses, including distance measures, correlation coefficients and multivariate statistical models. Results: The purpose of this review is to summarize the principles of compositional data analysis (CoDA), provide evidence for why sequencing data are compositional, discuss compositionally valid methods available for analyzing sequencing data, and highlight future directions with regard to this field of study. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Sequência , Biblioteca Gênica , Humanos , Modelos Estatísticos , Análise de Sequência/estatística & dados numéricos
6.
Brain Behav Immun ; 82: 309-318, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493447

RESUMO

An emerging novel therapeutic agent for major depressive disorder, minocycline, has the potential to influence both gut microbiome and inflammatory status. The present study showed that chronic high fat diet feeding led to changes in both behaviour and the gut microbiome in male mice, without an overt inflammatory response. The diet-induced behavioural changes were characterised as increased immobility in the forced swim test and changes in locomotor activities in the open field test. Minocycline significantly altered the gut microbiome, rendering a community distinctly different to both untreated healthy and diet-affected states. In contrast, minocycline did not reverse high fat diet-induced changes in behaviour.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Minociclina/farmacologia , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Minociclina/metabolismo
7.
Am J Med Genet B Neuropsychiatr Genet ; 180(6): 377-389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30520558

RESUMO

Autism spectrum disorder (ASD) is a markedly heterogeneous condition with a varied phenotypic presentation. Its high concordance among siblings, as well as its clear association with specific genetic disorders, both point to a strong genetic etiology. However, the molecular basis of ASD is still poorly understood, although recent studies point to the existence of sex-specific ASD pathophysiologies and biomarkers. Despite this, little is known about how exactly sex influences the gene expression signatures of ASD probands. In an effort to identify sex-dependent biomarkers and characterize their function, we present an analysis of a single paired-end postmortem brain RNA-Seq data set and a meta-analysis of six blood-based microarray data sets. Here, we identify several genes with sex-dependent dysregulation, and many more with sex-independent dysregulation. Moreover, through pathway analysis, we find that these sex-independent biomarkers have substantially different biological roles than the sex-dependent biomarkers, and that some of these pathways are ubiquitously dysregulated in both postmortem brain and blood. We conclude by synthesizing the discovered biomarker profiles with the extant literature, by highlighting the advantage of studying sex-specific dysregulation directly, and by making a call for new transcriptomic data that comprise large female cohorts.


Assuntos
Transtorno do Espectro Autista/genética , Redes Reguladoras de Genes/genética , Caracteres Sexuais , Transtorno do Espectro Autista/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Biomarcadores , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Análise de Sequência de RNA/métodos , Irmãos , Transcriptoma/genética
8.
BMC Bioinformatics ; 19(1): 274, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021534

RESUMO

BACKGROUND: Count data generated by next-generation sequencing assays do not measure absolute transcript abundances. Instead, the data are constrained to an arbitrary "library size" by the sequencing depth of the assay, and typically must be normalized prior to statistical analysis. The constrained nature of these data means one could alternatively use a log-ratio transformation in lieu of normalization, as often done when testing for differential abundance (DA) of operational taxonomic units (OTUs) in 16S rRNA data. Therefore, we benchmark how well the ALDEx2 package, a transformation-based DA tool, detects differential expression in high-throughput RNA-sequencing data (RNA-Seq), compared to conventional RNA-Seq methods such as edgeR and DESeq2. RESULTS: To evaluate the performance of log-ratio transformation-based tools, we apply the ALDEx2 package to two simulated, and two real, RNA-Seq data sets. One of the latter was previously used to benchmark dozens of conventional RNA-Seq differential expression methods, enabling us to directly compare transformation-based approaches. We show that ALDEx2, widely used in meta-genomics research, identifies differentially expressed genes (and transcripts) from RNA-Seq data with high precision and, given sufficient sample sizes, high recall too (regardless of the alignment and quantification procedure used). Although we show that the choice in log-ratio transformation can affect performance, ALDEx2 has high precision (i.e., few false positives) across all transformations. Finally, we present a novel, iterative log-ratio transformation (now implemented in ALDEx2) that further improves performance in simulations. CONCLUSIONS: Our results suggest that log-ratio transformation-based methods can work to measure differential expression from RNA-Seq data, provided that certain assumptions are met. Moreover, these methods have very high precision (i.e., few false positives) in simulations and perform well on real data too. With previously demonstrated applicability to 16S rRNA data, ALDEx2 can thus serve as a single tool for data from multiple sequencing modalities.


Assuntos
Benchmarking , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Sequência de Bases , Simulação por Computador , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/genética
9.
Hum Mutat ; 38(10): 1378-1393, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489284

RESUMO

We assessed the impact of disease mutations (DMs) versus polymorphisms (PYs) in coiled-coil (CC) domains in UniProt by modeling the structural and functional impact of variants in silico with the CC prediction program Multicoil. The structural impact of variants was evaluated with respect to three main metrics: the oligomerization score-to determine whether the variant is stabilizing or destabilizing-the oligomerization state, and the register-specific score. The functional impact was queried indirectly in several ways. First, we examined marginally stable CCs that were either stabilized or destabilized by the variant. Second, we looked for variants that altered the register of the wild-type CC near wild-type irregularities of likely functional importance, such as skips and stammers. Third, we searched for variants that altered the oligomerization state of the CC. DMs tended to be more destabilizing than PYs; but interestingly, PYs were more frequently associated with predicted changes in the oligomerization state. The functional impact was also queried by testing the association of CC variants with multiple phenotypes, that is, pleiotropy. Mutations in CC regions of proteins cause 155 different phenotypes and are more frequently associated with pleiotropy than proteins in general. Importantly, the CC region itself often encodes the pleiotropy.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Proteoma/genética , Sequência de Aminoácidos/genética , Estudos de Associação Genética , Humanos , Modelos Moleculares , Mutação/genética , Estrutura Quaternária de Proteína , Proteínas/química , Proteoma/química
10.
Mol Biol Evol ; 33(4): 995-1007, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26739881

RESUMO

Mitochondria are critical for life, yet their underlying evolutionary biology is poorly understood. In particular, little is known about interaction between two levels of evolution: between individuals and within individuals (competition between cells, mitochondria or mitochondrial DNA molecules). Rapid evolution is suspected to occur frequently in mitochondrial DNA, whose maternal inheritance predisposes advantageous mutations to sweep rapidly though populations. Rapid evolution is also predicted in response to changed selection regimes after species invasion or removal of pathogens or competitors. Here, using empirical and simulated data from a model invasive bird species, we provide the first demonstration of rapid selection on the mitochondrial genome within individuals in the wild. Further, we show differences in mitochondrial DNA copy number associated with competing genetic variants, which may provide a mechanism for selection. We provide evidence for three rarely documented phenomena: selection associated with mitochondrial DNA abundance, selection on the mitochondrial control region, and contemporary selection during invasion.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Seleção Genética/genética , Animais , Aves/genética , Variação Genética , Genótipo , Espécies Introduzidas , Mitocôndrias/genética , Mutação
11.
BMC Genomics ; 16: 820, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26482036

RESUMO

BACKGROUND: In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified. METHODS: MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis. RESULTS: We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were expressed in mouse but not in human BAT. CONCLUSION: The present study has identified a small sub-set of miRNAs common to both mouse and human BAT. From this sub-set bioinformatics analysis suggested a potential role of miR-20a in the control of cell fate and this warrants further investigation. The large number of miRNAs found only in mouse BAT or only in human BAT highlights the differing molecular profile between species that is likely to influence the functional role of BAT across species. Nevertheless the BAT-enriched miRNA profiles established in the present study suggest targets to investigate in the control BAT development and EE.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom , Metabolismo Energético/genética , MicroRNAs/biossíntese , Termogênese/genética , Adulto , Animais , Diferenciação Celular/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos
12.
Semin Cell Dev Biol ; 23(5): 547-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22498725

RESUMO

The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.


Assuntos
Macropodidae/metabolismo , Proteínas do Leite/metabolismo , Animais , Feminino , Humanos , Lactação , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Modelos Biológicos
13.
J Anim Sci Biotechnol ; 15(1): 28, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38374201

RESUMO

At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.

14.
BMC Genomics ; 14: 169, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23497009

RESUMO

BACKGROUND: The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon 'lactating' crop-specific annexin cp35. Beta-keratins play an important role in 'lactating' crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.


Assuntos
Columbidae/genética , Perfilação da Expressão Gênica , Leite/fisiologia , Triglicerídeos/genética , Animais , Apoptose , Evolução Biológica , Diferenciação Celular , Columbidae/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Transglutaminases/genética , Triglicerídeos/biossíntese , beta-Queratinas/genética
15.
Islets ; 15(1): 2165368, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36709757

RESUMO

Targeting ß-cell failure could prevent, delay or even partially reverse Type 2 diabetes. However, development of such drugs is limited as the molecular pathogenesis is complex and incompletely understood. Further, while ß-cell failure can be modeled experimentally, only some of the molecular changes will be pathogenic. Therefore, we used a novel approach to identify molecular pathways that are not only changed in a diabetes-like state but also are reversible and can be targeted by drugs. INS1E cells were cultured in high glucose (HG, 20 mM) for 72 h or HG for an initial 24 h followed by drug addition (exendin-4, metformin and sodium salicylate) for the remaining 48 h. RNAseq (Illumina TruSeq), gene set enrichment analysis (GSEA) and pathway analysis (using Broad Institute, Reactome, KEGG and Biocarta platforms) were used to identify changes in molecular pathways. HG decreased function and increased apoptosis in INS1E cells with drugs partially reversing these effects. HG resulted in upregulation of 109 pathways while drug treatment downregulated 44 pathways with 21 pathways in common. Interestingly, while hyperglycemia extensively upregulated metabolic pathways, they were not altered with drug treatment, rather pathways involved in the cell cycle featured more heavily. GSEA for hyperglycemia identified many known pathways validating the applicability of our cell model to human disease. However, only a fraction of these pathways were downregulated with drug treatment, highlighting the importance of considering druggable pathways. Overall, this provides a powerful approach and resource for identifying appropriate targets for the development of ß-cell drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Células Secretoras de Insulina , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Metformina/farmacologia , Transdução de Sinais
16.
Neurotox Res ; 41(6): 502-513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922109

RESUMO

Novel approaches are required to find new treatments for schizophrenia and other neuropsychiatric disorders. This study utilised a combination of in vitro transcriptomics and in silico analysis with the BROAD Institute's Connectivity Map to identify drugs that can be repurposed to treat psychiatric disorders. Human neuronal (NT2-N) cells were treated with a combination of atypical antipsychotic drugs commonly used to treat psychiatric disorders (such as schizophrenia, bipolar disorder, and major depressive disorder), and differential gene expression was analysed. Biological pathways with an increased gene expression included circadian rhythm and vascular endothelial growth factor signalling, while the adherens junction and cell cycle pathways were transcriptionally downregulated. The Connectivity Map (CMap) analysis screen highlighted drugs that affect global gene expression in a similar manner to these psychiatric disorder treatments, including several other antipsychotic drugs, confirming the utility of this approach. The CMap screen specifically identified metergoline, an ergot alkaloid currently used to treat seasonal affective disorder, as a drug of interest. In mice, metergoline dose-dependently reduced MK-801- or methamphetamine-induced locomotor hyperactivity confirming the potential of metergoline to treat positive symptoms of schizophrenia in an animal model. Metergoline had no effects on prepulse inhibition deficits induced by MK-801 or methamphetamine. Taken together, metergoline appears a promising drug for further studies to be repurposed as a treatment for schizophrenia and possibly other psychiatric disorders.


Assuntos
Antipsicóticos , Transtorno Depressivo Maior , Metanfetamina , Humanos , Camundongos , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Metergolina/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Maleato de Dizocilpina , Transcriptoma , Fator A de Crescimento do Endotélio Vascular
17.
Appl Microbiol Biotechnol ; 96(5): 1361-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22249719

RESUMO

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.


Assuntos
Biota , Ceco/microbiologia , Dieta , Jejuno/microbiologia , Metagenoma , Animais , Galinhas , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Anim Nutr ; 10: 156-166, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35757559

RESUMO

Artificial gut models including both the gastric and intestinal phases have been used in poultry research for decades to predict the digestibility of nutrients, the efficacy of feed enzymes and additives, and caecal fermentation. However, the models used in the past are static and cannot be used to predict interactions between the feed, gut environment and microbiome. It is imperative that a standard artificial gut model for poultry is established, to enable these interactions to be examined without continual reliance on animals. To ensure the validity of an artificial model, it should be validated with in vivo studies. This review describes current practices in the use of artificial guts in research, their importance in poultry nutrition studies and highlights an opportunity to develop a dynamic gut model for poultry to reduce the number of in vivo experiments.

19.
BMC Genomics ; 12: 452, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929790

RESUMO

BACKGROUND: Both male and female pigeons have the ability to produce a nutrient solution in their crop for the nourishment of their young. The production of the nutrient solution has been likened to lactation in mammals, and hence the product has been called pigeon 'milk'. It has been shown that pigeon 'milk' is essential for growth and development of the pigeon squab, and without it they fail to thrive. Studies have investigated the nutritional value of pigeon 'milk' but very little else is known about what it is or how it is produced. This study aimed to gain insight into the process by studying gene expression in the 'lactating' crop. RESULTS: Macroscopic comparison of 'lactating' and non-'lactating' crop reveals that the 'lactating' crop is enlarged and thickened with two very obvious lateral lobes that contain discrete rice-shaped pellets of pigeon 'milk'. This was characterised histologically by an increase in the number and depth of rete pegs extending from the basal layer of the epithelium to the lamina propria, and extensive proliferation and folding of the germinal layer into the superficial epithelium. A global gene expression profile comparison between 'lactating' crop and non-'lactating' crop showed that 542 genes are up-regulated in the 'lactating' crop, and 639 genes are down-regulated. Pathway analysis revealed that genes up-regulated in 'lactating' crop were involved in the proliferation of melanocytes, extracellular matrix-receptor interaction, the adherens junction and the wingless (wnt) signalling pathway. Gene ontology analysis showed that antioxidant response and microtubule transport were enriched in 'lactating' crop. CONCLUSIONS: There is a hyperplastic response in the pigeon crop epithelium during 'lactation' that leads to localised cellular stress and expression of antioxidant protein-encoding genes. The differentiated, cornified cells that form the pigeon 'milk' are of keratinocyte lineage and contain triglycerides that are likely endocytosed as very low density lipoprotein (VLDL) and repackaged as triglyceride in vesicles that are transported intracellularly by microtubules. This mechanism is an interesting example of the evolution of a system with analogies to mammalian lactation, as pigeon 'milk' fulfils a similar function to mammalian milk, but is produced by a different mechanism.


Assuntos
Columbidae/genética , Papo das Aves/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Animais , Cicer/genética , Papo das Aves/anatomia & histologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos
20.
Anim Biosci ; 34(3): 354-362, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33705622

RESUMO

Broiler chickens grow rapidly, and their nutrient requirements change daily. However, broilers are fed three to five diet phases, meaning nutrients are under or oversupplied throughout production. Increasing diet phases improves production efficiency as there is less time in the production cycle that nutrients are in under or over-supply. Nevertheless, the process of administering four or more diets is costly and often impractical. New technologies are now available to blend feed to match the daily nutrient requirements of broilers. Thus, the aim of this review is to evaluate previous studies measuring the impact of increasing feed phases on nutrient utilisation and growth performance, and review recent studies taking this concept to the extreme; precision nutrition - feeding a new diet for each day of the production cycle. This review will also discuss how modern precision feeding technologies have been utilised and the potential that new technologies may bring to the poultry industry. The development of a precision nutrition regime which targets daily requirements by blending dietary components on farm is anticipated to improve the efficiency of production, reduce production cost and therefore improve sustainability of the industry. There is also potential for precision feeding technology along with precision nutrition strategies to deliver a plethora of other management and economic benefits. These include increased fluidity to cope with sudden environmental or market changes, and the ability to alter diets on a farm by farm level in a large, integrated operation. Thus, the future possibilities and practical implications for such technologies to generate a paradigm shift in feed formulation within the poultry industry to meet the rising demand for animal protein is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA