Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cytotherapy ; 26(5): 444-455, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38363248

RESUMO

BACKGROUND AIMS: Coronavirus disease 2019 (COVID-19) is characterized by a broad spectrum of clinical manifestations with the potential to progress to multiple organ dysfunction in severe cases. Extracellular vesicles (EVs) carry a range of biological cargoes, which may be used as biomarkers of disease state. METHODS: An exploratory secondary analysis of the SARITA-2 and SARITA-1 datasets (randomized clinical trials on patients with mild and moderate/severe COVID-19) was performed. Serum-derived EVs were used for proteomic analysis to identify enriched biological processes and key proteins, thus providing insights into differences in disease severity. Serum-derived EVs were separated from patients with COVID-19 by size exclusion chromatography and nanoparticle tracking analysis was used to determine particle concentration and diameter. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to identify and quantify protein signatures. Bioinformatics and multivariate statistical analysis were applied to distinguish candidate proteins associated with disease severity (mild versus moderate/severe COVID-19). RESULTS: No differences were observed in terms of the concentration and diameter of enriched EVs between mild (n = 14) and moderate/severe (n = 30) COVID-19. A total of 414 proteins were found to be present in EVs, of which 360 were shared while 48 were uniquely present in severe/moderate compared to mild COVID-19. The main biological signatures in moderate/severe COVID-19 were associated with platelet degranulation, exocytosis, complement activation, immune effector activation, and humoral immune response. Von Willebrand factor, serum amyloid A-2 protein, histone H4 and H2A type 2-C, and fibrinogen ß-chain were the most differentially expressed proteins between severity groups. CONCLUSION: Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins related to immune response and activation of coagulation and complement pathways, which are associated with disease severity. Our data suggest that EV proteins may be relevant biomarkers of disease state and prognosis.


Assuntos
COVID-19 , Vesículas Extracelulares , Proteômica , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adulto , Espectrometria de Massas em Tandem , Cromatografia Líquida
2.
Crit Care ; 28(1): 165, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750543

RESUMO

BACKGROUND: Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT: Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS: This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.


Assuntos
Matriz Extracelular , Pulmão , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Matriz Extracelular/metabolismo , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Pulmão/fisiopatologia , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Metaloproteinases da Matriz/metabolismo , Animais
3.
Cell Physiol Biochem ; 57(5): 331-344, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724045

RESUMO

BACKGROUND/AIMS: Recombinant adeno-associated viruses (rAAV) are an important tool for lung targeted gene therapy. Substitution of tyrosine with phenylalanine residues (Y-F) in the capsid have been shown to protect the AAV vector from ubiquitin/proteasome degradation, increasing transduction efficiency. We tested the mutant Y733F-AAV8 vector for mucus diffusion, as well as the safety and efficacy of pigment epithelium-derived factor (PEDF) gene transfer to the lung. METHODS: For this purpose, Y733F-AAV8-PEDF (1010 viral genome) was administered intratracheally to C57BL/6 mice. Lung mechanics, morphometry, and inflammation were evaluated 7, 14, 21, and 28 days after injection. RESULTS: The tyrosine-mutant AAV8 vector was efficient at penetrating mucus in ex vivo assays and at transferring the gene to lung cells after in vivo instillation. Increased levels of transgene mRNA were observed 28 days after vector administration. Overexpression of PEDF did not affect in vivo lung parameters. CONCLUSION: These findings provide a basis for further development of Y733F-AAV8-based gene therapies for safe and effective delivery of PEDF, which has anti-angiogenic, anti-inflammatory and anti-fibrotic activities and might be a promising therapy for lung inflammatory disorders.


Assuntos
Proteínas do Olho , Técnicas de Transferência de Genes , Serpinas , Animais , Camundongos , Proteínas do Olho/genética , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética , Serpinas/genética
4.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175936

RESUMO

The effects of the administration of mesenchymal stromal cells (MSC) may vary according to the source. We hypothesized that MSC-derived extracellular vesicles (EVs) obtained from bone marrow (BM), adipose (AD), or lung (L) tissues may also lead to different effects in sepsis. We profiled the proteome from EVs as a first step toward understanding their mechanisms of action. Polymicrobial sepsis was induced in C57BL/6 mice by cecal ligation and puncture (SEPSIS) and SHAM (control) animals only underwent laparotomy. Twenty-four hours after surgery, animals in the SEPSIS group were randomized to receive saline or 3 × 106 MSC-derived EVs from BM, AD, or L. The diffuse alveolar damage was decreased with EVs from all three sources. In kidneys, BM-, AD-, and L-EVs reduced edema and expression of interleukin-18. Kidney injury molecule-1 expression decreased only in BM- and L-EVs groups. In the liver, only BM-EVs reduced congestion and cell infiltration. The size and number of EVs from different sources were not different, but the proteome of the EVs differed. BM-EVs were enriched for anti-inflammatory proteins compared with AD-EVs and L-EVs. In conclusion, BM-EVs were associated with less organ damage compared with the other sources of EVs, which may be related to differences detected in their proteome.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Sepse , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Pulmão , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Sepse/metabolismo
5.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33361100

RESUMO

BACKGROUND: Nitazoxanide is widely available and exerts broad-spectrum antiviral activity in vitro. However, there is no evidence of its impact on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: In a multicentre, randomised, double-blind, placebo-controlled trial, adult patients presenting up to 3 days after onset of coronavirus disease 2019 (COVID-19) symptoms (dry cough, fever and/or fatigue) were enrolled. After confirmation of SARS-CoV-2 infection using reverse transcriptase PCR on a nasopharyngeal swab, patients were randomised 1:1 to receive either nitazoxanide (500 mg) or placebo, three times daily, for 5 days. The primary outcome was complete resolution of symptoms. Secondary outcomes were viral load, laboratory tests, serum biomarkers of inflammation and hospitalisation rate. Adverse events were also assessed. RESULTS: From June 8 to August 20, 2020, 1575 patients were screened. Of these, 392 (198 placebo, 194 nitazoxanide) were analysed. Median (interquartile range) time from symptom onset to first dose of study drug was 5 (4-5) days. At the 5-day study visit, symptom resolution did not differ between the nitazoxanide and placebo arms. Swabs collected were negative for SARS-CoV-2 in 29.9% of patients in the nitazoxanide arm versus 18.2% in the placebo arm (p=0.009). Viral load was reduced after nitazoxanide compared to placebo (p=0.006). The percentage viral load reduction from onset to end of therapy was higher with nitazoxanide (55%) than placebo (45%) (p=0.013). Other secondary outcomes were not significantly different. No serious adverse events were observed. CONCLUSIONS: In patients with mild COVID-19, symptom resolution did not differ between nitazoxanide and placebo groups after 5 days of therapy. However, early nitazoxanide therapy was safe and reduced viral load significantly.


Assuntos
COVID-19 , Adulto , Humanos , Nitrocompostos , SARS-CoV-2 , Tiazóis , Resultado do Tratamento
6.
Crit Care Med ; 49(1): 140-150, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33060501

RESUMO

OBJECTIVES: We hypothesized that a time-controlled adaptive ventilation strategy would open and stabilize alveoli by controlling inspiratory and expiratory duration. Time-controlled adaptive ventilation was compared with volume-controlled ventilation at the same levels of mean airway pressure and positive end-release pressure (time-controlled adaptive ventilation)/positive end-expiratory pressure (volume-controlled ventilation) in a Pseudomonas aeruginosa-induced pneumonia model. DESIGN: Animal study. SETTING: Laboratory investigation. SUBJECTS: Twenty-one Wistar rats. INTERVENTIONS: Twenty-four hours after pneumonia induction, Wistar rats (n = 7) were ventilated with time-controlled adaptive ventilation (tidal volume = 8 mL/kg, airway pressure release ventilation for a Thigh = 0.75-0.85 s, release pressure (Plow) set at 0 cm H2O, and generating a positive end-release pressure = 1.6 cm H2O applied for Tlow = 0.11-0.14 s). The expiratory flow was terminated at 75% of the expiratory flow peak. An additional 14 animals were ventilated using volume-controlled ventilation, maintaining similar time-controlled adaptive ventilation levels of positive end-release pressure (positive end-expiratory pressure=1.6 cm H2O) and mean airway pressure = 10 cm H2O. Additional nonventilated animals (n = 7) were used for analysis of molecular biology markers. MEASUREMENTS AND MAIN RESULTS: After 1 hour of mechanical ventilation, the heterogeneity score, the expression of pro-inflammatory biomarkers interleukin-6 and cytokine-induced neutrophil chemoattractant-1 in lung tissue were significantly lower in the time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure groups (p = 0.008, p = 0.011, and p = 0.011, respectively). Epithelial cell integrity, measured by E-cadherin tissue expression, was higher in time-controlled adaptive ventilation than volume-controlled ventilation with similar mean airway pressure (p = 0.004). Time-controlled adaptive ventilation animals had bacteremia counts lower than volume-controlled ventilation with similar mean airway pressure animals, while time-controlled adaptive ventilation and volume-controlled ventilation with similar positive end-release pressure animals had similar colony-forming unit counts. In addition, lung edema and cytokine-induced neutrophil chemoattractant-1 gene expression were more reduced in time-controlled adaptive ventilation than volume-controlled ventilation with similar positive end-release pressure groups. CONCLUSIONS: In the model of pneumonia used herein, at the same tidal volume and mean airway pressure, time-controlled adaptive ventilation, compared with volume-controlled ventilation, was associated with less lung damage and bacteremia and reduced gene expression of mediators associated with inflammation.


Assuntos
Pneumonia Bacteriana/terapia , Respiração Artificial/métodos , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
7.
Respir Res ; 22(1): 214, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330283

RESUMO

BACKGROUND: We evaluated the effects of abrupt versus gradual PEEP decrease, combined with standard versus high-volume fluid administration, on cardiac function, as well as lung and kidney damage in an established model of mild-moderate acute respiratory distress syndrome (ARDS). METHODS: Wistar rats received endotoxin intratracheally. After 24 h, they were treated with Ringer's lactate at standard (10 mL/kg/h) or high (30 mL/kg/h) dose. For 30 min, all animals were mechanically ventilated with tidal volume = 6 mL/kg and PEEP = 9 cmH2O (to keep alveoli open), then randomized to undergo abrupt or gradual (0.2 cmH2O/min for 30 min) PEEP decrease from 9 to 3 cmH2O. Animals were then further ventilated for 10 min at PEEP = 3 cmH2O, euthanized, and their lungs and kidneys removed for molecular biology analysis. RESULTS: At the end of the experiment, left and right ventricular end-diastolic areas were greater in animals treated with high compared to standard fluid administration, regardless of PEEP decrease rate. However, pulmonary arterial pressure, indicated by the pulmonary acceleration time (PAT)/pulmonary ejection time (PET) ratio, was higher in abrupt compared to gradual PEEP decrease, independent of fluid status. Animals treated with high fluids and abrupt PEEP decrease exhibited greater diffuse alveolar damage and higher expression of interleukin-6 (a pro-inflammatory marker) and vascular endothelial growth factor (a marker of endothelial cell damage) compared to the other groups. The combination of standard fluid administration and gradual PEEP decrease increased zonula occludens-1 expression, suggesting epithelial cell preservation. Expression of club cell-16 protein, an alveolar epithelial cell damage marker, was higher in abrupt compared to gradual PEEP decrease groups, regardless of fluid status. Acute kidney injury score and gene expression of kidney injury molecule-1 were higher in the high versus standard fluid administration groups, regardless of PEEP decrease rate. CONCLUSION: In the ARDS model used herein, decreasing PEEP abruptly increased pulmonary arterial hypertension, independent of fluid status. The combination of abrupt PEEP decrease and high fluid administration led to greater lung and kidney damage. This information adds to the growing body of evidence that supports gradual transitioning of ventilatory patterns and warrants directing additional investigative effort into vascular and deflation issues that impact lung protection.


Assuntos
Coração/fisiopatologia , Rim/fisiopatologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Coração/efeitos dos fármacos , Infusões Intravenosas , Rim/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/terapia , Lactato de Ringer/administração & dosagem , Lactato de Ringer/toxicidade , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
8.
Br J Anaesth ; 127(3): 353-364, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217468

RESUMO

COVID-19 pneumonia is associated with hypoxaemic respiratory failure, ranging from mild to severe. Because of the worldwide shortage of ICU beds, a relatively high number of patients with respiratory failure are receiving prolonged noninvasive respiratory support, even when their clinical status would have required invasive mechanical ventilation. There are few experimental and clinical data reporting that vigorous breathing effort during spontaneous ventilation can worsen lung injury and cause a phenomenon that has been termed patient self-inflicted lung injury (P-SILI). The aim of this narrative review is to provide an overview of P-SILI pathophysiology and the role of noninvasive respiratory support in COVID-19 pneumonia. Respiratory mechanics, vascular compromise, viscoelastic properties, lung inhomogeneity, work of breathing, and oesophageal pressure swings are discussed. The concept of P-SILI has been widely investigated in recent years, but controversies persist regarding its mechanisms. To minimise the risk of P-SILI, intensivists should better understand its underlying pathophysiology to optimise the type of noninvasive respiratory support provided to patients with COVID-19 pneumonia, and decide on the optimal timing of intubation for these patients.


Assuntos
Lesão Pulmonar Aguda/epidemiologia , Lesão Pulmonar Aguda/terapia , Anestesiologistas , COVID-19 , Ventilação não Invasiva , Respiração Artificial , Lesão Pulmonar Induzida por Ventilação Mecânica/epidemiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Humanos , Ventilação não Invasiva/efeitos adversos , Respiração com Pressão Positiva/efeitos adversos , Insuficiência Respiratória , Mecânica Respiratória
9.
Curr Opin Anaesthesiol ; 34(3): 357-363, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33935185

RESUMO

PURPOSE OF REVIEW: Anesthetics are known to have immunomodulatory effects. These can be detrimental, inducing immunosuppression and facilitating the development of opportunistic infections, especially when used at high doses, for prolonged periods, or in patients with preexisting immune deficiency; or beneficial, modulating the inflammatory response, particularly in critical illness and systemic hyperinflammatory states. RECENT FINDINGS: Anesthetics can have microbicidal properties, and both anti- and pro-inflammatory effects. They can act directly on immune cells as well as modulate immunity through indirect pathways, acting on the neuroimmune stress response, and have recently been described to interact with the gut microbiota. SUMMARY: Anesthesiologists should take into consideration the immunomodulatory properties of anesthetic agents in addition to their hemodynamic, neuroprotective, and other impacts. In future, patient stratification according to the perioperative assessment of serum biomarkers associated with postoperative complications may be used to guide anesthetic agent selection based on their immunomodulatory properties.


Assuntos
Anestesia , Anestésicos , Anestesia/efeitos adversos , Anestésicos/efeitos adversos , Humanos , Fatores Imunológicos/efeitos adversos , Complicações Pós-Operatórias
10.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L908-L925, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901521

RESUMO

Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Transplante de Células-Tronco Mesenquimais/métodos
11.
Eur Respir J ; 55(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32265310

RESUMO

The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted urgent need for novel therapies. Cell-based approaches, primarily using mesenchymal stem (stromal) cells (MSCs), have demonstrated safety and possible efficacy in patients with acute respiratory distress syndrome (ARDS), although they are not yet well studied in respiratory virus-induced ARDS. Limited pre-clinical data suggest that systemic MSC administration can significantly reduce respiratory virus (influenza strains H5N1 and H9N2)-induced lung injury; however, there are no available data in models of coronavirus respiratory infection.There is a rapidly increasing number of clinical investigations of cell-based therapy approaches for COVID-19. These utilise a range of different cell sources, doses, dosing strategies and targeted patient populations. To provide a rational strategy to maximise potential therapeutic use, it is critically important to understand the relevant pre-clinical studies and postulated mechanisms of MSC actions in respiratory virus-induced lung injuries. This review presents these, along with consideration of current clinical investigations.


Assuntos
Infecções por Coronavirus/terapia , Meios de Cultivo Condicionados , Influenza Humana/terapia , Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Pneumonia Viral/terapia , Síndrome do Desconforto Respiratório/terapia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , COVID-19 , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/transplante , Humanos , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H9N2 , Lesão Pulmonar/virologia , Células-Tronco Mesenquimais/metabolismo , Infecções por Orthomyxoviridae/terapia , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Serina Endopeptidases/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L823-L831, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553626

RESUMO

Mesenchymal stromal (stem) cells (MSCs) are increasingly demonstrated to ameliorate experimentally induced lung injuries through disease-specific anti-inflammatory actions, thus suggesting that different in vivo inflammatory environments can influence MSC actions. To determine the effects of different representative inflammatory lung conditions, human bone marrow-derived MSCs (hMSCs) were exposed to in vitro culture conditions from bronchoalveolar lavage fluid (BALF) samples obtained from patients with either the acute respiratory distress syndrome (ARDS) or with other lung diseases including acute respiratory exacerbations of cystic fibrosis (CF) (non-ARDS). hMSCs were subsequently assessed for time- and BALF concentration-dependent effects on mRNA expression of selected pro- and anti-inflammatory mediators, and for overall patterns of gene and mRNA expression. Both common and disease-specific patterns were observed in gene expression of different hMSC mediators, notably interleukin (IL)-6. Conditioned media obtained from non-ARDS BALF-exposed hMSCs was more effective in promoting an anti-inflammatory phenotype in monocytes than was conditioned media from ARDS BALF-exposed hMSCs. Neutralizing IL-6 in the conditioned media promoted generation of anti-inflammatory monocyte phenotype. This proof of concept study suggest that different lung inflammatory environments potentially can alter hMSC behaviors. Further identification of these interactions and the driving mechanisms may influence clinical use of MSCs for treating lung diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Meios de Cultivo Condicionados/farmacologia , Fibrose Cística/terapia , Células-Tronco Mesenquimais/citologia , Pneumonia/terapia , Síndrome do Desconforto Respiratório/terapia , Fibrose Cística/imunologia , Fibrose Cística/patologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
13.
Respir Res ; 20(1): 155, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311539

RESUMO

BACKGROUND: Conflicting data have reported beneficial effects of crystalloids, hyper-oncotic albumin (20%ALB), and iso-oncotic albumin (5%ALB) in critically ill patients. Although hyper-oncotic albumin may minimize lung injury, recent studies have shown that human albumin may lead to kidney damage proportional to albumin concentration. In this context, we compared the effects of Ringer's lactate (RL), 20%ALB, and 5%ALB, all titrated according to similar hemodynamic goals, on pulmonary function, lung and kidney histology, and molecular biology in experimental acute lung injury (ALI). METHODS: Male Wistar rats received Escherichia coli lipopolysaccharide intratracheally (n = 24) to induce ALI. After 24 h, animals were anesthetized and randomly assigned to receive RL, 20%ALB, or 5%ALB (n = 6/group) to maintain hemodynamic stability (distensibility index of inferior vena cava < 25%, mean arterial pressure > 65 mmHg). Rats were then mechanically ventilated for 6 h. Six animals, which received neither ventilation nor fluids (NV), were used for molecular biology analyses. RESULTS: The total fluid volume infused was higher in RL compared to 5%ALB and 20%ALB (median [interquartile range], 10.8[8.2-33.2] vs. 4.8[3.6-7.7] and 4.3[3.9-6.6] mL, respectively; p = 0.02 and p = 0.003). B-line counts on lung ultrasound (p < 0.0001 and p = 0.0002) and serum lactate levels (p = 0.01 and p = 0.01) were higher in RL than 5%ALB and 20%ALB. Diffuse alveolar damage score was lower in 5%ALB (10.5[8.5-12]) and 20%ALB (10.5[8.5-14]) than RL (16.5[12.5-20.5]) (p < 0.05 and p = 0.03, respectively), while acute kidney injury score was lower in 5%ALB (9.5[6.5-10]) than 20%ALB (18[15-28.5], p = 0.0006) and RL (16 [15-19], p = 0.04). In lung tissue, mRNA expression of interleukin (IL)-6 was higher in RL (59.1[10.4-129.3]) than in 5%ALB (27.0[7.8-49.7], p = 0.04) or 20%ALB (3.7[7.8-49.7], p = 0.03), and IL-6 protein levels were higher in RL than 5%ALB and 20%ALB (p = 0.026 and p = 0.021, respectively). In kidney tissue, mRNA expression and protein levels of kidney injury molecule (KIM)-1 were lower in 5%ALB than RL and 20%ALB, while nephronectin expression increased (p = 0.01 and p = 0.01), respectively. CONCLUSIONS: In a rat model of ALI, both iso-oncotic and hyper-oncotic albumin solutions were associated with less lung injury compared to Ringer's lactate. However, hyper-oncotic albumin resulted in greater kidney damage than iso-oncotic albumin. This experimental study is a step towards future clinical designs.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Albuminas/toxicidade , Soluções Cristaloides/toxicidade , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
14.
Anesthesiology ; 130(5): 767-777, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870161

RESUMO

BACKGROUND: This study hypothesized that, in experimental mild acute respiratory distress syndrome, lung damage caused by high tidal volume (VT) could be attenuated if VT increased slowly enough to progressively reduce mechanical heterogeneity and to allow the epithelial and endothelial cells, as well as the extracellular matrix of the lung to adapt. For this purpose, different strategies of approaching maximal VT were tested. METHODS: Sixty-four Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, animals were randomly assigned to receive mechanical ventilation with VT = 6 ml/kg for 2 h (control); VT = 6 ml/kg during hour 1 followed by an abrupt increase to VT = 22 ml/kg during hour 2 (no adaptation time); VT = 6 ml/kg during the first 30 min followed by a gradual VT increase up to 22 ml/kg for 30 min, then constant VT = 22 ml/kg during hour 2 (shorter adaptation time); and a more gradual VT increase, from 6 to 22 ml/kg during hour 1 followed by VT = 22 ml/kg during hour 2 (longer adaptation time). All animals were ventilated with positive end-expiratory pressure of 3 cm H2O. Nonventilated animals were used for molecular biology analysis. RESULTS: At 2 h, diffuse alveolar damage score and heterogeneity index were greater in the longer adaptation time group than in the control and shorter adaptation time animals. Gene expression of interleukin-6 favored the shorter (median [interquartile range], 12.4 [9.1-17.8]) adaptation time compared with longer (76.7 [20.8 to 95.4]; P = 0.02) and no adaptation (65.5 [18.1 to 129.4]) time (P = 0.02) strategies. Amphiregulin, metalloproteinase-9, club cell secretory protein-16, and syndecan showed similar behavior. CONCLUSIONS: In experimental mild acute respiratory distress syndrome, lung damage in the shorter adaptation time group compared with the no adaptation time group was attenuated in a time-dependent fashion by preemptive adaptation of the alveolar epithelial cells and extracellular matrix. Extending the adaptation period increased cumulative power and did not prevent lung damage, because it may have exposed animals to injurious strain earlier and for a longer time, thereby negating any adaptive benefit.


Assuntos
Lesão Pulmonar/prevenção & controle , Volume de Ventilação Pulmonar , Adaptação Fisiológica , Animais , Interleucina-6/genética , Masculino , Respiração com Pressão Positiva , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/complicações , Volume de Ventilação Pulmonar/fisiologia
15.
Crit Care Med ; 46(2): e132-e140, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29116998

RESUMO

OBJECTIVES: Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. DESIGN: Animal study and primary cell culture. SETTING: Laboratory investigation. SUBJECTS: Seventy-five Wistar rats. INTERVENTIONS: Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). MEASUREMENTS AND MAIN RESULTS: Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1ß, keratinocyte-derived chemokine, transforming growth factor-ß, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. CONCLUSIONS: Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.


Assuntos
Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Nefropatias/etiologia , Nefropatias/cirurgia , Hepatopatias/etiologia , Hepatopatias/cirurgia , Pneumopatias/etiologia , Pneumopatias/cirurgia , Pulmão/citologia , Transplante de Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
16.
Crit Care ; 22(1): 249, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290827

RESUMO

BACKGROUND: Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. METHODS: Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. RESULTS: Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. CONCLUSIONS: In rats, focal ischemic stroke is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.


Assuntos
Lesão Pulmonar/etiologia , Macrófagos Alveolares/patologia , Fagócitos/patologia , Acidente Vascular Cerebral/complicações , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Terapia de Imunossupressão/efeitos adversos , Interleucina-6/análise , Interleucina-6/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , RNA Mensageiro/análise , RNA Mensageiro/sangue , Ratos , Ratos Wistar/imunologia , Ratos Wistar/metabolismo , Estatísticas não Paramétricas , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
17.
Nanomedicine ; 14(7): 2075-2085, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29933023

RESUMO

The magnetic targeting (MT) technique improves delivery of mesenchymal stromal cells (MSCs) to target sites. However, the moderate-intensity static magnetic fields (SMF) used for MT may exert adverse effects on MSCs. Thus, we aimed to evaluate the effects of SMF on MSCs in vitro. Cells were initially magnetized using citrate-coated magnetite nanoparticles. Then, control and magnetized MSCs were transferred to an in vitro MT system and exposed to 0.3-0.45 Tesla SMFs. MSC viability, morphology, ultrastructure, proliferation rates, differentiation, and immunomodulation were evaluated after 24 and 48 hours of exposure. MSCs temporarily lost viability and exhibited ultrastructural changes after exposure to SMFs, regardless of magnetization. Moreover, exposure to SMF reduced magnetized MSC proliferation rates. Nevertheless, MSCs remained functional (i.e., capable of differentiating, secreting repair mediators, and modulating alveolar macrophage phenotype). Thus, the experimental protocol tested in this experiment can be applied in future in vivo MT studies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Campos Magnéticos , Nanopartículas de Magnetita/administração & dosagem , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
18.
Anesth Analg ; 125(2): 491-498, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28277329

RESUMO

BACKGROUND: Volatile anesthetics modulate inflammation in acute respiratory distress syndrome (ARDS). However, it is unclear whether they act differently depending on ARDS etiology. We hypothesized that the in vivo and in vitro effects of sevoflurane and isoflurane on lung damage would not differ in pulmonary (p) and extrapulmonary (exp) ARDS. METHODS: Twenty-four Wistar rats were randomized to undergo general anesthesia (1-2 minutes) with sevoflurane and isoflurane. Animals were then further randomized to receive Escherichia coli lipopolysaccharide (LPS) intratracheally (ARDSp) or intraperitoneally (ARDSexp), and 24 hours after ARDS induction, they were subjected to 60 minutes of sevoflurane or isoflurane anesthesia at 1 minimal alveolar concentration. The primary outcome measure was interleukin (IL)-6 mRNA expression in lung tissue. Secondary outcomes included gas exchange, lung mechanics, histology, and mRNA expression of IL-10, nuclear factor erythroid 2-related factor-2 (Nrf2), surfactant protein (SP)-B, vascular cell adhesion molecule-1, epithelial amiloride-sensitive Na-channel subunits α and γ, and sodium-potassium-adenosine-triphosphatase pump subunits α1 (α1-Na,K-ATPase) and ß1 (ß1-Na,K-ATPase). Additional ARDSp and ARDSexp animals (n = 6 per group) were anesthetized with sodium thiopental but not mechanically ventilated (NV) to serve as controls. Separately, to identify how sevoflurane and isoflurane act on type II epithelial cells, A549 human lung epithelial cells were stimulated with LPS (20 µg/mL) for 24 hours, and SP-B expression was quantified after further exposure to sevoflurane or isoflurane (1 minimal alveolar concentration ) for 60 minutes. RESULTS: In ARDSp, sevoflurane reduced IL-6 expression to a greater degree than isoflurane (P = .04). Static lung elastance (P = .0049) and alveolar collapse (P = .033) were lower in sevoflurane than isoflurane, whereas Nrf2 (P = .036), SP-B (P = .042), and ß1-Na,K-ATPase (P = .038) expressions were higher in sevoflurane. In ARDSexp, no significant differences were observed in lung mechanics, alveolar collapse, or molecular parameters between sevoflurane and isoflurane. In vitro, SP-B expression was higher in sevoflurane than isoflurane (P = .026). CONCLUSIONS: Compared with isoflurane, sevoflurane did not affect lung inflammation in ARDSexp, but it did reduce lung inflammation in ARDSp.


Assuntos
Isoflurano/uso terapêutico , Pulmão/efeitos dos fármacos , Éteres Metílicos/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Células A549 , Anestésicos , Animais , Escherichia coli , Feminino , Humanos , Inflamação , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/etiologia , Sevoflurano , Fatores de Tempo
19.
Cryobiology ; 78: 95-100, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645680

RESUMO

There is no consensus on aspects of equine bone marrow collection and processing. The study aimed to describe the collection of large volumes of bone marrow from horses of advanced age, with emphasis on bone marrow mononuclear cells (BMMCs) recovery and viability after cryopreservation. Fourteen horses, aged 3-24 years, were divided into three experiments. E1 studied the feasibility of collecting 200 mL from the sternums of horses of advanced age; E2 examined the number of cells obtained from the first and last syringe of each puncture; and E3 investigated the influence of heparin concentration on the prevention of cell aggregation, and cell viability after freezing in liquid nitrogen. Bone marrow aspirations were done with syringes pre-filled with Iscove's modified Dulbecco's medium and different concentrations of sodium heparin. BMMCs were counted, cell viability was determined, and samples were frozen. Bone marrow collection from the sternum is safe, even at large volumes and from horses of advanced age, and the number of cells recovered decreases with successive aspirations (p < 0.0001). Heparin concentration influenced cell aggregation, and recovered cells continued to be commercially viable after 150 days in frozen storage.


Assuntos
Células da Medula Óssea/fisiologia , Agregação Celular/efeitos dos fármacos , Criopreservação/métodos , Heparina/farmacologia , Leucócitos Mononucleares/fisiologia , Animais , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Feminino , Congelamento , Cavalos , Masculino , Esterno/citologia
20.
Respir Res ; 15: 118, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25272959

RESUMO

We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×105), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-ß levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.


Assuntos
Células da Medula Óssea/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/terapia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA