Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(2): 37, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294550

RESUMO

KEY MESSAGE: Estimating genetic gains and formulating a future salinity elite breeding panel for rice pave the way for developing better high-yielding salinity tolerant lines with enhanced genetic gains. Genetic gain is a crucial parameter to check the breeding program's success and help optimize future breeding strategies for enhanced genetic gains. To estimate the genetic gains in IRRI's salinity breeding program and identify the best genotypes based on high breeding values for grain yield (kg/ha), we analyzed the historical data from the trials conducted in the IRRI, Philippines and Bangladesh. A two-stage mixed-model approach accounting for experimental design factors and a relationship matrix was fitted to obtain the breeding values for grain yield and estimate genetic trends. A positive genetic trend of 0.1% per annum with a yield advantage of 1.52 kg/ha was observed in IRRI, Philippines. In Bangladesh, we observed a genetic gain of 0.31% per annum with a yield advantage of 14.02 kg/ha. In the released varieties, we observed a genetic gain of 0.12% per annum with a 2.2 kg/ha/year yield advantage in the IRRI, Philippines. For the Bangladesh dataset, a genetic gain of 0.14% per annum with a yield advantage of 5.9 kg/ha/year was observed in the released varieties. Based on breeding values for grain yield, a core set of the top 145 genotypes with higher breeding values of > 2400 kg/ha in the IRRI, Philippines, and > 3500 kg/ha in Bangladesh with a reliability of > 0.4 were selected to develop the elite breeding panel. Conclusively, a recurrent selection breeding strategy integrated with novel technologies like genomic selection and speed breeding is highly required to achieve higher genetic gains in IRRI's salinity breeding programs.


Assuntos
Oryza , Oryza/genética , Reprodutibilidade dos Testes , Salinidade , Melhoramento Vegetal , Bangladesh , Grão Comestível
2.
Curr Genomics ; 22(6): 468-483, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35340358

RESUMO

Aims: The aim of the present study was to evaluate the performance of 'high'-'low' yielding pyramided lines (PLs), having the same combinations of qDTYs in Samba Mahsuri, MR219 and IR64-Sub1 genetic backgrounds, and to understand the genetic interactions among QTL and/with genetic background affecting grain yield. Background: Epistasis regulates the expression of traits governed by several major/minor genes/QTL. Multiple pyramided lines (PLs) with the same grain yield QTL (qDTYs) combinations but possessing grain yield variability under different levels of reproductive stage drought stress were identified in different rice genetic backgrounds at International Rice Research Institute (IRRI). Objectives: The objectives of the present study were to evaluate the performance pyramided lines (PLs) with drought QTL in the backgrounds of Samba Mahsuri, MR219 and IR64-Sub1 under reproductive stage drought stress (RS) and NS (non-stress) conditions, to understand the effect of epistatic interactions among qDTYs and with genetic background on GY under the differential level of stress and to identify the promising drought-tolerant lines with high yield under drought and higher background recovery in different genetic backgrounds. Methods: The experiments were conducted in 2015 DS (dry season), 2015 WS (wet season) and 2017 DS at IRRI, Los Baños, Philippines, in a transplanted lowland ecosystem under lowland severe stress (LSS), lowland moderate stress (LMS) and lowland non-stress (LNS). The experiments were laid out in alpha lattice design with two replications. Results: Several digenic interactions were found in different genetic backgrounds, 13 interactions in Samba Mahsuri, 11 in MR219 and 20 in IR64-Sub1 backgrounds. Among all digenic interactions, one QTL × QTL interaction, 17 QTL × background and 26 background × background interactions resulted in GY reduction in low yielding PLs in different genetic backgrounds under LSS or LMS. Negative interaction of qDTY3.1 , qDTY4.1 and qDTY9.1 with background markers and background × background interactions caused up to 15% GY reduction compared to the high yielding PLs under LMS in the Samba Mahsuri PLs. In MR219 PLs, the negative interaction of qDTY2.2 , qDTY3.2 , qDTY4.1 and qDTY12.1 with the background marker interval RM314-RM539, RM273-RM349 and RM445-RM346, RM473D-RM16, respectively resulted 52% GY reduction compared to the high yielding PLs under LSS. In IR64-Sub1 PLs, qDTY6.1 interacted with background loci at RM16-RM135, RM228-RM333, RM202-RM287 and RM415-RM558A marker interval under LSS and at RM475-RM525 marker interval under LMS, causing GY reduction to 58% compared to the high yielding PLs. Conclusion: High yielding PLs in Samba Mahsuri (IR 99734:1-33-69-1-22-6), MR219 (IR 99784-156-87-2-4-1) and IR64-Sub1 (IR 102784:2-89-632-2-1-2) backgrounds without any negative interactions were identified. The identified selected promising PLs may be used as potential drought-tolerant donors or may be released as varieties for drought-prone ecosystems in different countries.

3.
BMC Genet ; 14: 12, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23442150

RESUMO

BACKGROUND: Selection for grain yield under drought is an efficient criterion for improving the drought tolerance of rice. Recently, some drought-tolerant rice varieties have been developed using this selection criterion and successfully released for cultivation in drought-prone target environments. The process can be made more efficient and rapid through marker-assisted breeding, a well-known fast-track approach in crop improvement. QTLs have been identified for grain yield under drought with large effects against drought-susceptible varieties. Most of the identified QTLs show large QTL × environment or QTL × genetic background interactions. The development of mapping populations in the background of popular high-yielding varieties, screening across environments, including the target environments, and the identification of QTLs with a consistent effect across environments can be a suitable alternative marker-assisted breeding strategy. An IR74371-46-1-1 × Sabitri backcross inbred line population was screened for reproductive-stage drought stress at the International Rice Research Institute, Philippines, and Regional Agricultural Research Station, Nepalgunj, Nepal, in the dry and wet seasons of 2011, respectively. A bulk segregant analysis approach was used to identify markers associated with high grain yield under drought. RESULTS: A QTL, qDTY12.1, significantly associated with grain yield under reproductive-stage drought stress was identified on chromosome 12 with a consistent effect in two environments: IRRI, Philippines, and RARS, Nepalgunj, Nepal. This QTL explained phenotypic variance of 23.8% and contributed an additive effect of 45.3% for grain yield under drought. The positive QTL allele for qDTY12.1 was contributed by tolerant parent IR74371-46-1-1. CONCLUSIONS: In this study, qDTY12.1 showed a consistent effect across environments for high grain yield under lowland reproductive-stage drought stress in the background of popular high-yielding but drought-susceptible recipient variety Sabitri. qDTY12.1 was also reported previously [Crop Sci 47:507-516, 2007] to increase grain yield under upland reproductive-stage drought stress situations. qDTY12.1 is the only QTL reported so far in rice to have shown a large effect against multiple recipient genetic backgrounds as well as under highly diverse upland and lowland rice ecosystems. qDTY12.1 can be successfully introgressed to improve grain yield under drought of popular high-yielding but drought-susceptible lowland as well as upland adapted varieties following marker-assisted breeding.


Assuntos
Genes de Plantas , Oryza/fisiologia , Ásia Ocidental , Secas , Ecossistema , Genética Populacional , Oryza/genética , Fenótipo , Locos de Características Quantitativas
4.
Front Plant Sci ; 12: 637488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936127

RESUMO

There is an urgent need to breed dry direct-seeded adapted rice varieties in order to address the emerging scenario of water-labor shortage. The aim of this study was to develop high-yielding, direct-seeded adapted varieties utilizing biparental to multiparental crosses involving as many as six different parents in conventional breeding programs and 12 parents in genomics-assisted breeding programs. The rigorous single plant selections were followed from the F2 generation onwards utilizing phenotypic selection and quantitative trait locus (QTL)/gene-based/linked markers for tracking the presence of desirable alleles of targeted QTL/genes. In conventional breeding, multiparent lines had significantly higher yields (2,072-6,569 kg ha-1) than the biparental lines (1,493-6,326 kg ha-1). GAB lines derived from multiparent crosses had significantly higher (3,293-6,719 kg ha-1) yields than the multiparent lines from conventional breeding (2,072-6,569 kg ha-1). Eleven promising lines from genomics-assisted breeding carrying 7-11 QTL/genes and eight lines from conventional breeding with grain-yield improvement from 727 to 1,705 kg ha-1 and 68 to 902 kg ha-1, respectively, over the best check were selected. The developed lines may be released as varieties/parental lines to develop better rice varieties for direct-seeded situations or as novel breeding material to study genetic interactions.

5.
Front Plant Sci ; 10: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828343

RESUMO

With the changing climatic conditions and reducing labor-water availability, the potential contribution of aerobic rice varieties and cultivation system to develop a sustainable rice based agri-food system has never been more important than today. Keeping in mind the goal of identifying high-yielding aerobic rice varieties for wider adaptation, a set of aerobic rice breeding lines were developed and evaluated for grain yield, plant height, and days to 50% flowering in 23 experiments conducted across different location in Philippines, India, Bangladesh, Nepal, and Lao-PDR between 2014 and 2017 in both wet and dry seasons. The heritability for grain yield ranged from 0.52 to 0.90. The season-wise two-stage analysis indicated significant genotype x location interaction for yield under aerobic conditions in both wet and dry seasons. The genotype × season × location interaction for yield was non-significant in both seasons indicating that across seasons the genotypes at each location did not show variability in the grain yield performance. Mean grain yield of the studied genotypes across different locations/seasons ranged from 2,085 to 6,433 Kg ha-1. The best-fit model for yield stability with low AIC value (542.6) was AMMI(1) model. The identified stable genotypes; IR 92521-143-2-2-1, IR 97048-10-1-1-3, IR 91326-7-13-1-1, IR 91326-20-2-1-4, and IR 91328-43-6-2-1 may serve as novel breeding material for varietal development under aerobic system of rice cultivation. High yield and stable performance of promising breeding lines may be due to presence of the earlier identified QTLs including grain yield under drought, grain yield under aerobic conditions, nutrient uptake, anaerobic germination, adaptability under direct seeded conditions, and tolerance to biotic stress resistance such as qDTY 2.1 , qDTY 3.1 , qDTY 12.1 , qNR 5.1 , AG 9.1 , qEVV 9.1 , qRHD 1.1 , qRHD 5.1, qRHD 8.1 qEMM 1.1 , qGY 6.1 , BPH3, BPH17, GM4, xa4, Xa21, Pita, and Pita2. The frequency of xa4 gene was highest followed by qAG 9.1, GM4, qDTY 3.1 , qDTY 2.1 , qGY 6.1, and qDTY 12.1.

6.
Front Plant Sci ; 8: 1879, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163604

RESUMO

Reducing water requirements and lowering environmental footprints require attention to minimize risks to food security. The present study was conducted with the aim to identify appropriate root traits enhancing rice grain yield under alternate wetting and drying conditions (AWD) and identify stable, high-yielding genotypes better suited to the AWD across variable ecosystems. Advanced breeding lines, popular rice varieties and drought-tolerant lines were evaluated in a series of 23 experiments conducted in the Philippines, India, Bangladesh, Nepal and Cambodia in 2015 and 2016. A large variation in grain yield under AWD conditions enabled the selection of high-yielding and stable genotypes across locations, seasons and years. Water savings of 5.7-23.4% were achieved without significant yield penalty across different ecosystems. The mean grain yield of genotypes across locations ranged from 3.5 to 5.6 t/ha and the mean environment grain yields ranged from 3.7 (Cambodia) to 6.6 (India) t/ha. The best-fitting Finlay-Wilkinson regression model identified eight stable genotypes with mean grain yield of more than 5.0 t/ha across locations. Multidimensional preference analysis represented the strong association of root traits (nodal root number, root dry weight at 22 and 30 days after transplanting) with grain yield. The genotype IR14L253 outperformed in terms of root traits and high mean grain yield across seasons and six locations. The 1.0 t/ha yield advantage of IR14L253 over the popular cultivar IR64 under AWD shall encourage farmers to cultivate IR14L253 and also adopt AWD. The results suggest an important role of root architectural traits in term of more number of nodal roots and root dry weight at 10-20 cm depth on 22-30 days after transplanting (DAT) in providing yield stability and preventing yield reduction under AWD compared to continuous flooded conditions. Genotypes possessing increased number of nodal roots provided higher yield over IR64 as well as no yield reduction under AWD compared to flooded irrigation. The identification of appropriate root architecture traits at specific depth and specific growth stage shall help breeding programs develop better rice varieties for AWD conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA