Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 103(4): 686-701, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565807

RESUMO

Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Humanos , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Células Cultivadas , Cisplatino/toxicidade , Rim/metabolismo , Camundongos Endogâmicos C57BL , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Proteínas Klotho/metabolismo
2.
Kidney Int ; 101(6): 1200-1215, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35337892

RESUMO

Growth differentiation factor-15 (GDF15) is a member of the GDF subfamily with potential kidney protective functions. Here, we explored the impact of GDF15 on the expression of the kidney protective factor Klotho in models of acute kidney injury and kidney fibrosis in mice. GDF15 was the most upregulated GDF family gene in experimental toxic acute kidney injury and in kidney fibrosis transcriptomics. GDF15 function was explored in toxic acute kidney injury in genetically modified mice and following treatment with GDF15. Gdf15-deficient mice developed more severe toxic acute kidney injury (folic acid or cisplatin) while GDF15 overexpression or GDF15 administration were protective. Kidney expression of Klotho was more severely depressed in Gdf15-deficient mice and was preserved by GDF15 overexpression or GDF15 treatment. Moreover, increased plasma calcitriol levels inversely correlated with kidney Klotho across models with diverse levels of GDF15 availability. Kidney fibrosis induced by unilateral ureteral obstruction was more severe in Gdf15-deficient mice while GDF15 overexpression decreased kidney injury and preserved Klotho expression. GDF15 increased Klotho expression in vivo in healthy mice, in cultured tubular cells, and prevented Klotho downregulation by inflammatory factors in tubular cells by preventing transcription factor NF-ĸB activation. Thus, spontaneous increased kidney expression of endogenous GDF15 is not enough to prevent kidney injury, but further increments in GDF15 are kidney protecting and preserve expression of the kidney protective factor Klotho within the kidney in acute and chronic settings.


Assuntos
Injúria Renal Aguda , Glucuronidase , Injúria Renal Aguda/induzido quimicamente , Animais , Fibrose , Glucuronidase/genética , Glucuronidase/metabolismo , Rim/patologia , Proteínas Klotho , Camundongos
3.
Nephrol Dial Transplant ; 35(4): 587-598, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504777

RESUMO

BACKGROUND: Nlrp6 is a nucleotide-binding oligomerization domain-like receptor (NLR) that forms atypical inflammasomes. Nlrp6 modulates the gut epithelium interaction with the microbiota. However, the expression and function of Nlrp6 in the kidney, a sterile environment, have not been characterized. We explored the role of Nlrp6 in acute kidney injury (AKI). METHODS: In a transcriptomics array of murine nephrotoxic AKI, Nlrp6 and Naip3 were the only significantly downregulated NLR genes. The functional implications of Nlrp6 downregulation were explored in mice and in cultured murine tubular cells. RESULTS: Nlrp6 was expressed by healthy murine and human kidney tubular epithelium, and expression was reduced during human kidney injury or murine nephrotoxic AKI induced by cisplatin or a folic acid overdose. Genetic Nlrp6 deficiency resulted in upregulation of kidney extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) phosphorylation and more severe AKI and kidney inflammation. In cultured tubular cells, Nlrp6 downregulation induced by specific small interfering RNA resulted in upregulation of ERK1/2 and p38 phosphorylation and chemokine messenger RNA expression and downregulation of the nephroprotective gene Klotho. MAPK inhibition prevented the inflammatory response in Nlrp6-deficient cells. CONCLUSION: Nlrp6 dampens sterile inflammation and has a nephroprotective role during nephrotoxic kidney injury through suppression of MAP kinase activation.


Assuntos
Injúria Renal Aguda/patologia , Apoptose , Inflamação/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Receptores de Superfície Celular/fisiologia , Índice de Gravidade de Doença , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Idoso , Animais , Estudos de Casos e Controles , Células Cultivadas , Regulação para Baixo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma
4.
Nephrol Dial Transplant ; 34(9): 1498-1507, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541139

RESUMO

BACKGROUND: Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. METHODS: The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. RESULTS: Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. CONCLUSIONS: MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.


Assuntos
Injúria Renal Aguda/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Células Epiteliais/patologia , Túbulos Renais/patologia , Estresse Fisiológico , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Citocina TWEAK/genética , Citocina TWEAK/metabolismo , Células Epiteliais/metabolismo , Feminino , Túbulos Renais/lesões , Túbulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regulação para Cima
5.
Nutrients ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924419

RESUMO

Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventually, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Microbioma Gastrointestinal/imunologia , Hiperfosfatemia/metabolismo , Fósforo na Dieta/metabolismo , Insuficiência Renal Crônica/complicações , Animais , Quelantes/administração & dosagem , Distúrbio Mineral e Ósseo na Doença Renal Crônica/imunologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/microbiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/terapia , Modelos Animais de Doenças , Progressão da Doença , Saúde Holística , Humanos , Hiperfosfatemia/imunologia , Hiperfosfatemia/microbiologia , Hiperfosfatemia/terapia , Camundongos , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Fósforo na Dieta/efeitos adversos , Fósforo na Dieta/antagonistas & inibidores , Fósforo na Dieta/sangue , Probióticos/uso terapêutico , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/terapia , Células Th17/imunologia
6.
J Clin Med ; 9(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664235

RESUMO

Primary membranous nephropathy is usually caused by antibodies against the podocyte antigen membrane M-type phospholipase A2 receptor (PLA2R). The treatment of membranous nephropathy is not fully satisfactory. The calcineurin inhibitor tacrolimus is used to treat membranous nephropathy, but recurrence upon drug withdrawal is common. TNF superfamily members are key mediators of kidney injury. We have now identified key TNF receptor superfamily members in podocytes and explored the regulation of PLA2R expression and the impact of tacrolimus. Data mining of single cell transcriptomics and glomerular transcriptomics data identified TNFRSF12a/Fn14 as the highest expressed TNF receptor superfamily gene in human membranous nephropathy, and this was confirmed by immunohistochemistry that also identified NFκB activation in membranous nephropathy podocytes. Additionally, glomerular transcriptomics identified PLA2R1 expression as being increased in membranous nephropathy in the parenteral administration of the Fn14 ligand TWEAK increased podocyte PLA2R expression in mice. Furthermore, in cultured human podocytes, TWEAK increased the expression of PLA2R as well as the expression of other genes recently identified by GWAS as linked to membranous nephropathy: NFKB1 and IRF4. Interestingly, IRF4 encodes the FK506-binding protein 52 (FKBP52), a protein associated with tacrolimus. Tacrolimus prevented the increased expression of PLA2R, NFKB1 and IRF4 induced by TWEAK in cultured podocytes. In conclusion, TWEAK upregulates the expression of PLA2R and of other genes linked to membranous nephropathy in podocytes, and this is prevented by tacrolimus. An impact of tacrolimus on the expression of PLA2R and other genes in podocytes may underlie its efficacy in treating the disease as well as the frequent recurrence of nephrotic syndrome upon tacrolimus withdrawal.

7.
ACS Omega ; 4(5): 8581-8587, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459948

RESUMO

Herein, we report the synthesis and neuroprotective power of some N-substituted C-(dialkoxy)phosphorylated nitrones 4a-g, by studying their ability to increase the cell viability, as well as their capacity to reduce necrosis and apoptosis. We have identified (Z)-N-tert-butyl-1-(diethoxyphosphoryl)methanimine oxide (4e) as the most potent, nontoxic, and neuroprotective agent, with a high activity against neuronal necrotic cell death, a result that correlates very well with its great capacity for the inhibition of the superoxide production (72%), as well as with the inhibition of lipid peroxidation (62%), and the 5-lipoxygenase activity (45%) at 100 µM concentrations. Thus, nitrone 4e could be a convenient promising compound for further investigation.

8.
Nefrologia (Engl Ed) ; 39(6): 568-580, 2019.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31196660

RESUMO

Mitogen-activated protein kinases (MAP kinases) are functionally connected kinases that regulate key cellular process involved in kidney disease such as all survival, death, differentiation and proliferation. The typical MAP kinase module is composed by a cascade of three kinases: a MAP kinase kinase kinase (MAP3K) that phosphorylates and activates a MAP kinase kinase (MAP2K) which phosphorylates a MAP kinase (MAPK). While the role of MAPKs such as ERK, p38 and JNK has been well characterized in experimental kidney injury, much less is known about the apical kinases in the cascade, the MAP3Ks. There are 24 characterized MAP3K (MAP3K1 to MAP3K21 plus RAF1, BRAF and ARAF). We now review current knowledge on the involvement of MAP3K in non-malignant kidney disease and the therapeutic tools available. There is in vivo interventional evidence clearly supporting a role for MAP3K5 (ASK1) and MAP3K14 (NIK) in the pathogenesis of experimental kidney disease. Indeed, the ASK1 inhibitor Selonsertib has undergone clinical trials for diabetic kidney disease. Additionally, although MAP3K7 (MEKK7, TAK1) is required for kidney development, acutely targeting MAP3K7 protected from acute and chronic kidney injury; and targeting MAP3K8 (TPL2/Cot) protected from acute kidney injury. By contrast MAP3K15 (ASK3) may protect from hypertension and BRAF inhibitors in clinical use may induced acute kidney injury and nephrotic syndrome. Given their role as upstream regulators of intracellular signaling, MAP3K are potential therapeutic targets in kidney injury, as demonstrated for some of them. However, the role of most MAP3K in kidney disease remains unexplored.


Assuntos
Nefropatias/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Humanos , Transdução de Sinais
9.
PLoS One ; 13(6): e0199391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924850

RESUMO

CD74 is a multifunctional protein and a receptor for Macrophage Migration Inhibitory Factor (MIF) and MIF-2 / D-dopachrome tautomerase (DDT) cytokines, upregulated in diabetic kidney disease. However, the drivers of CD74 expression and DDT function in kidney cells are poorly characterized. TWEAK is a proinflammatory cytokine that promotes kidney injury. We have now identified CD74 gene expression as upregulated in the kidneys in response to systemic TWEAK administration in mice, and have characterized the in vivo CD74 expression and the functional consequences in cultured cells. TWEAK administration to mice resulted in a progressive time-dependent (up to 24h) upregulation of kidney CD74 mRNA (RT-PCR) and protein (Western blot). Furthermore, the CD74 ligands MIF and DDT were also upregulated at the protein level 24h after TWEAK administration. Immunohistochemistry localized the increased CD74, MIF and DDT expression to tubular cells. In cultured tubular cells, TWEAK increased CD74 mRNA and protein expression dose-dependently, with a temporal pattern similar to in vivo. TWEAK-induced CD74 localized to the cell membrane, where it can function as a cytokine receptor. For the first time, we explored the actions of DDT in tubular cells and found that DDT amplified the increase in MCP-1 and RANTES expression in response to TWEAK. By contrast, DDT did not significantly modify TWEAK-induced Klotho downregulation. In conclusion, TWEAK upregulates CD74 and its ligands MIF and DDT in renal tubular cells. This may have functional consequences for kidney injury since DDT amplified the inflammatory response to TWEAK.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Citocina TWEAK/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Inflamação/patologia , Oxirredutases Intramoleculares/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA