Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 77(1): 138-149.e5, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735643

RESUMO

PGAM5 is a mitochondrial serine/threonine phosphatase that regulates multiple metabolic pathways and contributes to tumorigenesis in a poorly understood manner. We show here that PGAM5 inhibition attenuates lipid metabolism and colorectal tumorigenesis in mice. PGAM5-mediated dephosphorylation of malic enzyme 1 (ME1) at S336 allows increased ACAT1-mediated K337 acetylation, leading to ME1 dimerization and activation, both of which are reversed by NEK1 kinase-mediated S336 phosphorylation. SIRT6 deacetylase antagonizes ACAT1 function in a manner that involves mutually exclusive ME1 S336 phosphorylation and K337 acetylation. ME1 also promotes nicotinamide adenine dinucleotide phosphate (NADPH) production, lipogenesis, and colorectal cancers in which ME1 transcripts are upregulated and ME1 protein is hypophosphorylated at S336 and hyperacetylated at K337. PGAM5 and ME1 upregulation occur via direct transcriptional activation mediated by ß-catenin/TCF1. Thus, the balance between PGAM5-mediated dephosphorylation of ME1 S336 and ACAT1-mediated acetylation of K337 strongly influences NADPH generation, lipid metabolism, and the susceptibility to colorectal tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosforilação/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Acetilação , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADP/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ativação Transcricional/fisiologia , Regulação para Cima/fisiologia
2.
J Biol Chem ; 299(9): 105090, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507016

RESUMO

Folate-mediated one-carbon metabolism (FOCM) is crucial in sustaining rapid proliferation and survival of cancer cells. The folate cycle depends on a series of key cellular enzymes, including aldehyde dehydrogenase 1 family member L2 (ALDH1L2) that is usually overexpressed in cancer cells, but the regulatory mechanism of ALDH1L2 remains undefined. In this study, we observed the significant overexpression of ALDH1L2 in colorectal cancer (CRC) tissues, which is associated with poor prognosis. Mechanistically, we identified that the acetylation of ALDH1L2 at the K70 site is an important regulatory mechanism inhibiting the enzymatic activity of ALDH1L2 and disturbing cellular redox balance. Moreover, we revealed that sirtuins 3 (SIRT3) directly binds and deacetylates ALDH1L2 to increase its activity. Interestingly, the chemotherapeutic agent 5-fluorouracil (5-Fu) inhibits the expression of SIRT3 and increases the acetylation levels of ALDH1L2 in colorectal cancer cells. 5-Fu-induced ALDH1L2 acetylation sufficiently inhibits its enzymatic activity and the production of NADPH and GSH, thereby leading to oxidative stress-induced apoptosis and suppressing tumor growth in mice. Furthermore, the K70Q mutant of ALDH1L2 sensitizes cancer cells to 5-Fu both in vitro and in vivo through perturbing cellular redox and serine metabolism. Our findings reveal an unknown 5-Fu-SIRT3-ALDH1L2 axis regulating redox homeostasis, and suggest that targeting ALDH1L2 is a promising therapeutic strategy to sensitize tumor cells to chemotherapeutic agents.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Camundongos , Acetilação , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Ácido Fólico/metabolismo , Oxirredução , Sirtuína 3/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mutação
3.
EMBO Rep ; 22(1): e50827, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33314701

RESUMO

Many cancer cells maintain enhanced aerobic glycolysis due to irreversible defective mitochondrial oxidative phosphorylation (OXPHOS). This phenomenon, known as the Warburg effect, is recently challenged because most cancer cells maintain OXPHOS. However, how cancer cells coordinate glycolysis and OXPHOS remains largely unknown. Here, we demonstrate that OMA1, a stress-activated mitochondrial protease, promotes colorectal cancer development by driving metabolic reprogramming. OMA1 knockout suppresses colorectal cancer development in AOM/DSS and xenograft mice models of colorectal cancer. OMA1-OPA1 axis is activated by hypoxia, increasing mitochondrial ROS to stabilize HIF-1α, thereby promoting glycolysis in colorectal cancer cells. On the other hand, under hypoxia, OMA1 depletion promotes accumulation of NDUFB5, NDUFB6, NDUFA4, and COX4L1, supporting that OMA1 suppresses OXPHOS in colorectal cancer. Therefore, our findings support a role for OMA1 in coordination of glycolysis and OXPHOS to promote colorectal cancer development and highlight OMA1 as a potential target for colorectal cancer therapy.


Assuntos
Neoplasias Colorretais , Fosforilação Oxidativa , Animais , Ciclo do Ácido Cítrico , Neoplasias Colorretais/genética , Glicólise , Hipóxia/genética , Camundongos
4.
Mol Cancer ; 21(1): 210, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376892

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. METHODS: The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. RESULTS: We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). CONCLUSIONS: The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias Colorretais/patologia , Elonguina/genética , Elonguina/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Br J Cancer ; 127(8): 1450-1460, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941174

RESUMO

BACKGROUND: Gastric cancer (GC) is characterised by a heterogeneous tumour microenvironment (TME) that is closely associated with the response to treatment, especially immunotherapies. However, most previous GC molecular subtyping systems need complex gene signatures and examination methods, restricting their clinical applications. Thus, we developed a new TME-based molecular subtype using only two genes. METHODS: Nine independent GC cohorts at the tissue- or single-cell level with more than 2000 patients were used in this study, including data we examined by single-cell sequencing, quantitative RT-PCR and immunochemistry/immunofluorescence staining. Nine different methods, five existing molecular subtypes and a series of signatures were used to evaluate the TME and molecular characteristics of GC. RESULTS: We established a CTSL/ZBTB7B subtyping system and uncovered the novel CTSLHighZBTB7BLow high-risk subgroup, but characterised by relative higher immune cell infiltration and lower tumour purity. This subgroup demonstrate higher levels of immune checkpoints and more enrichment of cancer-related pathways compared with other cases. CONCLUSIONS: We identified a high-risk subpopulation with unique TME features based on expressions of CTSL and ZBTB7B, suggesting a counterbalancing phenotype between immunostimulatory and immunosuppressive mechanisms. This subtyping system could be used to select treatment and management strategies for GC.


Assuntos
Neoplasias Gástricas , Catepsina L , Proteínas de Ligação a DNA/genética , Humanos , Imunoterapia , Fenótipo , Neoplasias Gástricas/patologia , Fatores de Transcrição/genética , Microambiente Tumoral/genética
6.
J Biomed Sci ; 29(1): 4, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039060

RESUMO

BACKGROUND: SLCO4A1-AS1 was found to be upregulated in several cancer types, including colorectal cancer (CRC). However, the detailed roles of SLCO4A1-AS1 in CRC remain to be elucidated. Therefore, we investigated the functions, mechanism, and clinical significance of SLCO4A1-AS1 in colorectal tumourigenesis. METHODS: We measured the expression of SLCO4A1-AS1 in CRC tissues using qRT-PCR and determined its correlation with patient prognosis. Promoter methylation analyses were used to assess the methylation status of SLCO4A1-AS1. Gain- and loss-of-function assays were used to evaluate the effects of SLCO4A1-AS1 on CRC growth in vitro and in vivo. RNA pull-down, RNA immunoprecipitation, RNA-seq, luciferase reporter and immunohistochemistry assays were performed to identify the molecular mechanism of SLCO4A1-AS1 in CRC. RESULTS: SLCO4A1-AS1 was frequently upregulated in CRC tissues based on multiple CRC cohorts and was associated with poor prognoses. Aberrant overexpression of SLCO4A1-AS1 in CRC is partly attributed to the DNA hypomethylation of its promoter. Ectopic SLCO4A1-AS1 expression promoted CRC cell growth, whereas SLCO4A1-AS1 knockdown repressed CRC proliferation both in vitro and in vivo. Mechanistic investigations revealed that SLCO4A1-AS1 functions as a molecular scaffold to strengthen the interaction between Hsp90 and Cdk2, promoting the protein stability of Cdk2. The SLCO4A1-AS1-induced increase in Cdk2 levels activates the c-Myc signalling pathway by promoting the phosphorylation of c-Myc at Ser62, resulting in increased tumour growth. CONCLUSIONS: Our data demonstrate that SLCO4A1-AS1 acts as an oncogene in CRC by regulating the Hsp90/Cdk2/c-Myc axis, supporting SLCO4A1-AS1 as a potential therapeutic target and prognostic factor for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/genética , Quinase 2 Dependente de Ciclina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-myc , RNA Antissenso , Transdução de Sinais/genética
7.
Small ; 17(45): e2103463, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761524

RESUMO

Cancer immunotherapy based on natural killer (NK) cells is demonstrated to be a promising strategy. However, NK cells are deficient in ligands that target specific tumors, resulting in limited antitumor efficacy. Here, a glycoengineering approach to imitate the chimeric antigen receptor strategy and decorate NK cells with nanobodies to promote NK-based immunotherapy in solid tumors is proposed. Nanobody 7D12, which specifically recognizes the human epidermal growth factor receptor (EGFR) that is overexpressed on many solid tumors, is coupled to the chemically synthesized DBCO-PEG4 -GGG-NH2 by sortase A-mediated ligation to generate DBCO-7D12. The NK92MI cells bearing azide groups are then equipped with DBCO-7D12 via bioorthogonal click chemistry. The resultant 7D12-NK92MI cells exhibit high specificity and affinity for EGFR-overexpressing tumor cells in vitro and in vivo by the 7D12-EGFR interaction, causing increased cytokine secretion to more effectively kill EGFR-positive tumor cells, but not EGFR-negative cancer cells. Importantly, the 7D12-NK92MI cells also show a wide anticancer spectrum and extensive tumor penetration. Furthermore, mouse experiments reveal that 7D12-NK92MI treatment achieves excellent therapeutic efficacy and outstanding safety. The authors' works provide a cell modification strategy using specific protein ligands without genetic manipulation and present a potential novel method for cancer-targeted immunotherapy by NK cells.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Animais , Linhagem Celular Tumoral , Imunoterapia , Imunoterapia Adotiva , Células Matadoras Naturais , Camundongos , Neoplasias/terapia
8.
Cell Death Differ ; 31(1): 65-77, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007551

RESUMO

Mitochondrial malic enzyme 2 (ME2), which catalyzes the conversion of malate to pyruvate, is frequently upregulated during tumorigenesis and is a potential target for cancer therapy. However, the regulatory mechanism underlying ME2 activity is largely unknown. In this study, we demonstrate that ME2 is highly expressed in human colorectal cancer (CRC) tissues, and that ME2 knockdown inhibits the proliferation of CRC cells. Furthermore, we reveal that ME2 is succinylated and identify Sirtuins 5 (SIRT5) as an ME2 desuccinylase. Glutamine deprivation directly enhances the interaction of SIRT5 with ME2 and thus promotes SIRT5-mediated desuccinylation of ME2 at lysine 346, activating ME2 enzymatic activity. Activated ME2 significantly enhances mitochondrial respiration, thereby counteracting the effects of glutamine deprivation and supporting cell proliferation and tumorigenesis. Additionally, the levels of succinylated ME2 at K346 and SIRT5 in CRC tissues, which are negatively correlated, are associated with patient prognosis. These observations suggest that SIRT5-catalyzed ME2 desuccinylation is a key signaling event through which cancer cells maintain mitochondrial respiration and promote CRC progression under glutamine deficiency conditions, offering the possibility of targeting SIRT5-mediated ME2 desuccinylation for CRC treatment.


Assuntos
Glutamina , Sirtuínas , Humanos , Proliferação de Células , Mitocôndrias , Carcinogênese , Respiração , Sirtuínas/genética
9.
Med Oncol ; 41(5): 100, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538804

RESUMO

Colorectal cancer (CRC) ranks as the third most prevalent cancer type globally. Nevertheless, the fundamental mechanisms driving CRC progression remain ambiguous, and the prognosis for the majority of patients diagnosed at an advanced stage is dismal. YWHA/14-3-3 proteins serve as central nodes in several signaling pathways and are closely related to tumorigenesis and progression. However, their exact roles in CRC are still poorly elucidated. In this study, we revealed that YWHAG was the most significantly upregulated member of the YWHA/14-3-3 family in CRC tissues and was associated with a poor prognosis. Subsequent phenotypic experiments showed that YWHAG promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, RNA-seq data showed that multiple signaling pathways, including Wnt and epithelial-mesenchymal transition, were potentially regulated by YWHAG. CTTN was identified as a YWHAG-associated protein, and mediated its tumor-promoting functions by activating the Wnt/ß-catenin signaling in CRC cells. In summary, our data indicate that YWHAG facilitates the proliferation, migration, and invasion of CRC cells by modulating the CTTN-Wnt/ß-catenin signaling pathway, which offers a novel perspective for the treatment of CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , beta Catenina/metabolismo , Via de Sinalização Wnt , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Prognóstico , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Transição Epitelial-Mesenquimal , Cortactina/metabolismo , Proteínas 14-3-3/metabolismo
10.
J Hepatocell Carcinoma ; 10: 1051-1067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449280

RESUMO

Introduction: Immune checkpoint (IC) inhibitor-related immunotherapies have attracted considerable attention in hepatocellular carcinoma (HCC). High IC expression and high tumor infiltrating lymphocyte levels are the current indicators of sensitivity to IC inhibitors. Thus, it is imperative to apply precision medicine strategies for patient selection. Methods: Six independent HCC cohorts were used for analysis at the single-cell and tissue levels. Multiplex immunofluorescence and immunochemistry staining assays were used to validate our results. A series of methodologies were used for immune-related evaluations. Results: Herein, we uncovered a unique CD8+CD274+ cell subpopulation that is associated with tumor progression and poor survival in HCC at the single-cell level. We assessed this subset at the tissue level and found that the prognostic significance of CD274 is dependent on CD8A expression in HCC. Subsequently, we identified a unique high-risk subpopulation that showed high CD8A expression coupled with intense CD274 expression in multiple HCC cohorts. CD8AHighCD274High* subgroup was correlated with malignant indexes and remained an independent prognostic factor when considering the influence of these indexes. Molecular characteristic analyses showed that the CD8AHighCD274High* subgroup harbored more mutations, had higher immune response activity and presented enrichment of cancer-related biological processes. Moreover, this high-risk subpopulation in HCC was characterized by high immune cell infiltration, low tumor purity, and enrichment of cancer-related signatures. Finally, cases with this phenotype demonstrated higher immunomodulator and IC levels and greater sensitivity to IC inhibitors. Conclusion: Our findings illustrate that some HCC patients may have a poor prognosis despite high CD8+ T-cell infiltration. These patients would probably benefit from IC inhibitor-based combination treatment.

11.
J Control Release ; 364: 672-686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967724

RESUMO

Small extracellular vesicles (sEVs) have shown excellent prospects as drug delivery systems for cancer therapy. However, the inherent non-targeting and short blood circulation characteristics severely restrict their practical applications as a delivery system. In addition, post-encapsulating drugs into sEVs also remains challenging. Here, we constructed an engineered cell line that secreted multifunctional sEVs (termed NBsEV204) with 7D12 (an anti-EGFR nanobody) and hCD47 decorations on their surface, as well as high levels of miR-204-5p encapsulation. NBsEV204 exhibited extended blood circulation and improved macrophage-mediated phagocytosis of tumor cells by blocking CD47 signaling. Importantly, NBsEV204 specifically targeted EGFR+ tumor cells and showed robust tumor-suppressive effects both in vitro and in vivo. Overall, this study provides a convenient and feasible method to produce off-the-shelf anticancer sEV nanomedicine, which exhibits tremendous potential for clinical translation.


Assuntos
Vesículas Extracelulares , MicroRNAs , Nanomedicina , Anticorpos , Transporte Biológico , Linhagem Celular
12.
Clin Transl Med ; 13(1): e1164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629054

RESUMO

BACKGROUND: Metabolic reprogramming is a hallmark of cancer. Metabolic rate-limiting enzymes and oncogenic c-Myc (Myc) play critical roles in metabolic reprogramming to affect tumourigenesis. However, a systematic assessment of metabolic rate-limiting enzymes and their relationship with Myc in human cancers is lacking. METHODS: Multiple Pan-cancer datasets were used to develop the transcriptome, genomic alterations, clinical outcomes and Myc correlation landscapes of 168 metabolic rate-limiting enzymes across 20 cancers. Real-time quantitative PCR and immunoblotting were, respectively, used to examine the mRNA and protein of inosine monophosphate dehydrogenase 1 (IMPDH1) in human colorectal cancer (CRC), azoxymethane/dextran sulphate sodium-induced mouse CRC and spontaneous intestinal tumours from APCMin/+ mice. Clone formation, CCK-8 and subcutaneous xenograft model were applied to investigate the possible mechanisms connecting IMPDH1 to CRC growth. Co-immunoprecipitation and protein half-life assay were used to explore the mechanisms underlying the regulation of IMPDH1. RESULTS: We explored the global expression patterns, dysregulation profiles, genomic alterations and clinical relevance of 168 metabolic rate-limiting enzymes across human cancers. Importantly, a series of enzymes were associated with Myc, especially top three upregulated enzymes (TK1, RRM2 and IMPDH1) were positively correlated with Myc in multiple cancers. As a proof-of-concept exemplification, we demonstrated that IMPDH1, a rate-limiting enzyme in GTP biosynthesis, is highly upregulated in CRC and promotes CRC growth in vitro and in vivo. Mechanistically, IMPDH2 stabilizes IMPDH1 by decreasing the polyubiquitination levels of IMPDH1, and Myc promotes the de novo GTP biosynthesis by the transcriptional activation of IMPDH1/2. Finally, we confirmed that the Myc-IMPDH1/2 axis is dysregulated across human cancers. CONCLUSIONS: Our study highlights the essential roles of metabolic rate-limiting enzymes in tumourigenesis and their crosstalk with Myc, and the Myc-IMPDH1/2 axis promotes tumourigenesis by altering GTP metabolic reprogramming. Our results propose the inhibition of IMPDH1 as a viable option for cancer treatment.


Assuntos
Carcinogênese , IMP Desidrogenase , Proteínas Proto-Oncogênicas c-myc , Animais , Humanos , Camundongos , Carcinogênese/genética , Guanosina Trifosfato , IMP Desidrogenase/genética , Proteínas Proto-Oncogênicas c-myc/genética
13.
Front Immunol ; 13: 888757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812384

RESUMO

Ferroptosis is a new non-apoptotic form that regulates cell death and is mainly dependent on iron-mediated oxidative damage and subsequent cell membrane damage. Ferroptosis may be a potential therapeutic strategy for immunotherapy, chemotherapy, and radiotherapy in human cancers. Numerous studies have analyzed ferroptosis-correlated signatures or genes, but a systematic landscape of associations among tumor ferroptosis, clinical outcomes, tumor microenvironment, and therapies in human cancers is lacking. Here, we developed a relative ferroptosis level (RFL) combined with drive/suppress regulators and validated it in the Gene Expression Omnibus datasets of ferroptotic drug treatment. Based on this effective evaluation method, we classified about 7,000 tumor samples into high and low RFL groups in each cancer type and observed that high RFL cases demonstrate favorable survival outcomes in nine cancer types from The Cancer Genome Atlas. Then, several RFL-correlated candidate genes that have not been reported to be ferroptosis-related were selected and experimentally validated in five cancer cell lines using Erastin treatment. We further showed that both immunostimulatory and immunosuppressive phenotypes were observed in high RFL tumors, suggesting that the consideration of ferroptosis could be a potential strategy in cancer immunotherapy. Moreover, we found that high RFL cases/cells showed responder or sensitivity to chemotherapy and radiotherapy. Our study provides a comprehensive molecular-level understanding of ferroptosis and may have practical implications for clinical cancer therapies, including immunotherapy, chemotherapy, and radiotherapy.


Assuntos
Ferroptose , Neoplasias , Ferroptose/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo , Prognóstico , Microambiente Tumoral/genética
14.
Adv Sci (Weinh) ; 9(9): 2102620, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35356153

RESUMO

Tumor-associated macrophages (TAMs) are one of the most abundant cell types in colorectal cancer (CRC) tumor microenvironment (TME). Recent studies observed complicated "cross-talks" between cancer cells and macrophages in TME. However, the underlying mechanisms are still poorly elucidated. Here, PD-L1 levels are very low in CRC cells but highly abundant in TAMs, and a specific PD-L1+CD206+ macrophage subpopulation are identified, which is induced by tumor cells and associated with a poor prognosis. Mechanistic investigations reveal that CRC cells can secrete small extracellular vesicles (sEVs) taken up by macrophages that induce M2 like polarization and PD-L1 expression, resulting in increased PD-L1+CD206+ macrophage abundance and decreased T cell activity in CRC TME. sEV-derived miR-21-5p and miR-200a are identified as key signaling molecules mediating the regulatory effects of CRC on macrophages. Further studies reveal that CRC-derived miR-21-5p and miR-200a synergistically induces macrophage M2 like polarization and PD-L1 expression by regulating the PTEN/AKT and SCOS1/STAT1 pathways, resulting in decreased CD8+ T cell activity and increased tumor growth. This study suggests that inhibiting the secretion of specific sEV-miRNAs from CRC and targeting PD-L1 in TAMs may serve as novel methods for CRC treatment as well as a sensitization method for anti-PD-L1 therapy in CRC.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias Colorretais , Vesículas Extracelulares , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Vesículas Extracelulares/metabolismo , Humanos , Evasão Tumoral , Microambiente Tumoral , Macrófagos Associados a Tumor
15.
Oncogene ; 41(50): 5397-5410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36348012

RESUMO

Extensive protein synthesis is necessary for uncontrolled cancer cell proliferation, requiring hyperactive ribosome biogenesis. Our previous Pan-cancer study has identified EXOSC8 as a potential copy number variation (CNV)-driven rRNA metabolism-related oncogene in colorectal cancer (CRC). Herein, we further investigated proliferation-prompting functions and mechanisms of EXOSC8 in CRC by performing in silico analyses and wet-lab experiments. We uncovered that increased EXOSC8 expression and CNV levels are strongly associated with ribosome biogenesis-related factor levels in CRC, including ribosome proteins (RPs), eukaryotic translation initiation factors and RNA polymerase I/III. EXOSC8 silence decreases nucleolar protein and proliferation marker levels, as well as rRNA/DNA and global protein syntheses. Clinically, EXOSC8 is upregulated across human cancers, particularly CNV-driven upregulation in CRC was markedly associated with poor clinical outcomes. Mechanistically, EXOSC8 knockdown increased p53 levels in CRC, and the oncogenic proliferation phenotypes of EXOSC8 depended on p53 in vitro and in vivo. We discovered that EXOSC8 knockdown in CRC cells triggers ribosomal stress, nucleolar RPL5/11 being released into the nucleoplasm and "hijacking" Mdm2 to block its E3 ubiquitin ligase function, thus releasing and activating p53. Furthermore, our therapeutic experiments provided initial evidence that EXOSC8 might serve as a potential therapeutic target in CRC. Our findings revealed, for the first time, that the RNA exosome gene (EXOSC8) promotes CRC tumorigenesis by regulating cancer-related ribosome biogenesis in CRC. This study further extends our previous Pan-cancer study of the rRNA metabolism-related genes. The inhibition of EXOSC8 is a novel therapeutic strategy for the RPs-Mdm2-p53 ribosome biogenesis surveillance pathway in CRC.


Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Variações do Número de Cópias de DNA , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a RNA/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética
16.
Front Cell Dev Biol ; 10: 896297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268513

RESUMO

Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.

17.
Pathol Res Pract ; 224: 153525, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34171602

RESUMO

Although SLC1A5 has been reported to be closely associated with some cancer types, a comprehensive and systematic assessment of SLC1A5 across human cancers is lacking. Thus, Pan-cancer analysis of SLC1A5 was performed across 30 types of human cancers in this study. We examined mRNA expression, protein expression, copy number variation (CNV), DNA methylation, clinical relevance, cell functions, drug response and total immune infiltrates of SLC1A5 in more than 9000 patients across 30 human cancer types from The Cancer Genome Atlas (TCGA) dataset. Additionally, nine independent Gene Expression Omnibus datasets, more than 800 cancer cell lines from the Cancer Cell Line Encyclopedia dataset and the Project Achilles dataset were used to validate our findings in the TCGA dataset. Landscapes of SLC1A5 were established across multiple cancers. We showed that SLC1A5 is upregulated in multiple cancers, particularly in digestive and respiratory system cancers. SLC1A5 upregulation may be driven by CNV gain and DNA hypomethylation in human cancers. Furthermore, SLC1A5 overexpression is associated with tumor progression and poor survival in multiple cancers. Moreover, we systematically explored the potential effects of SLC1A5 expression on cell functions and drug response in human cancers. SLC1A5 knockdown showed significant proliferation-inhibiting effects in most human cancer types, especially in the digestive system and KRAS-mutant cancers. SLC1A5 expression is associated with proliferation activities of KRAS-mutant cancer cell lines and drug response of many anti-cancer drugs. Finally, we demonstrated that SLC1A5-realted tumor immune microenvironment characteristics showed strong heterogeneity in human cancers. Taken together, our findings highlight the important roles of SLC1A5 in tumorigenesis, progression, prognosis and therapy.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/imunologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Variações do Número de Cópias de DNA/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Antígenos de Histocompatibilidade Menor/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/genética
18.
Front Oncol ; 11: 704067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222028

RESUMO

Although integrin subunit genes (ITGs) have been reported to be associated with some human cancer types, a systematic assessment of ITGs across human cancers is lacking. Hence, we performed comprehensive analyses to investigate mRNA expression, copy number variation (CNV), DNA methylation, mutation, and clinical landscapes of ITGs in more than 8000 cancer patients from The Cancer Genome Atlas (TCGA) dataset. Landscapes of ITGs were established across 20 human cancer types. We observed that ITGs are extensively dysregulated with heterogeneity in different system cancer types, part of which are driven by CNV, DNA hypomethylation or mutation. Furthermore, dysregulated prognosis-related ITGs were systematically identified in each cancer type, including ITGA11 in stomach adenocarcinoma (STAD). The models based on dysregulated ITGs with clinical relevance and TNM staging indexes are good indicators in STAD and head and neck squamous cell carcinoma. Finally, ITGA11 is overexpressed and associated with poor survival in STAD cases from the TCGA and additionally Gene Expression Omnibus cohorts. Functionally, ITGA11 knockdown inhibits malignant phenotypes in STAD cell lines AGS and MKN45, demonstrating the oncogenic role of ITGA11 in STAD. Together, this study highlights the important roles of ITGs in tumorigenesis as potential prognostic biomarkers, and provide an effective resource that identifies cancer-related genes of ITGs in human cancers.

19.
Front Cell Dev Biol ; 9: 770006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957102

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies globally. Increasing evidence indicates that circular RNAs (circRNAs) play a pivotal role in various cancers. The present study focused on exploring the role of a functionally unknown circRNA, hsa_circ_0062682 (circ_0062682), in CRC. By online analyses and experimental validations, we showed that circ_0062682 expression was aberrantly increased in CRC tissues compared with paired normal tissues. Increased expression of circ_0062682 in CRC notably correlated with a poor prognosis and advanced tumor stage. Functional experiments showed that circ_0062682 knockdown reduced CRC growth both in vitro and in vivo. Mechanistically, we revealed that circ_0062682 could sponge miR-940 and identified D-3-phosphoglycerate dehydrogenase (PHGDH), a key oxidoreductase involved in serine biosynthesis, as a novel target of miR-940. Silencing miR-940 expression could mimic the inhibitory effect of circ_0062682 knockdown on CRC proliferation. The expression of PHGDH was downregulated in circ_0062682-depleted or miR-940 overexpressing CRC cells at both the mRNA and protein levels. Circ_0062682 knockdown suppressed CRC growth by decreasing PHGDH expression and serine production via miR-940. Taken together, these data demonstrate, for the first time, that circ_0062682 promotes serine metabolism and tumor growth in CRC by regulating the miR-940/PHGDH axis, suggesting circ_0062682 as a potential novel therapeutic target for CRC.

20.
Oncogene ; 40(11): 2130-2145, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627780

RESUMO

Colorectal cancer (CRC) is characterized by a heterogeneous tumor microenvironment (TME) that regulates cancer progression and therapeutic response. Overexpression of FOXP3 and CTLA4 is associated with immunosuppressive TME and poor prognosis in many cancer types. However, opposite results were reported in CRC. Thus, we performed comprehensive analyses to evaluate the exact prognostic value of FOXP3 and CTLA4 in CRC. Here, the expression levels of FOXP3 and CTLA4 were used to construct a subtyping system based on >1200 CRC patients from multiple independent public datasets. We revealed that, in CRC patients with relatively high expression of FOXP3, there exist two different subpopulations with opposite survival patterns according to CLTA4 expression. We further established a method for evaluating all cohorts and identified a novel FOXP3HighCTLA4High* CRC risk subpopulation that accounts for 5-10% of CRC patients. Moreover, different methods of functional enrichment and immune evaluation were used to analyze the TME characteristics of different FOXP3/CTLA4 subtypes. The FOXP3HighCTLA4High* CRC risk subpopulation was characterized by an immune overdrive TME phenotype, including high immune cell infiltration, low tumor purity, high immune checkpoint levels, and TGF-ß activation. Finally, the constructed FOXP3/CTLA4 subtyping system was further validated by quantitative RT-PCR, immunochemistry staining, and multicolor immunofluorescence in an independent CRC cohort we collected. This high-risk subpopulation was also observed in kidney cancers and low-grade glioma patients by a Pan-cancer analysis. Together, our study revealed that the established FOXP3/CTLA4 molecular subtyping system could be used to select treatment and management strategies for CRC and other cancers.


Assuntos
Antígeno CTLA-4/genética , Neoplasias Colorretais/genética , Fatores de Transcrição Forkhead/genética , Fator de Crescimento Transformador beta/genética , Linhagem Celular Tumoral , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Fenótipo , Fatores de Risco , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA