Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7954): 830-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922588

RESUMO

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.

2.
J Am Chem Soc ; 145(2): 1359-1366, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36599106

RESUMO

Covalent organic framework (COF) chemistry is experiencing unprecedented development in recent decades. The current studies on COF chemistry are mainly focused on the discovery of novel covalent linkages, new topological structures, synthetic methodologies, and potential applications. However, despite the fact that noncovalent interactions are ubiquitous in COF chemistry, relatively little attention has been given to the role of noncovalent bonds on COF structures and their properties. In this work, a series of hydrazone-linked COFs involving noncovalent hydrogen bonds have been constructed, where the hydrogen-bonding interaction plays critical roles in the COF crystallinity and structures. The regulation of structural flexibility, the reversible transition between order and disorder, and the variety of host-guest interactions have been demonstrated in succession for the first time in COFs. The results obtained by the hydrogen-bonding-regulated strategy may also be extendable to other noncovalent interactions, such as π-π interactions, metal coordination interactions, Lewis acid-base interactions, etc. These findings will inspire future developments in the design, synthesis, structural regulation, and applications of COFs by manipulating noncovalent interactions.

3.
Nat Mater ; 21(10): 1150-1157, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927434

RESUMO

Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.


Assuntos
Semicondutores , Fluorescência
4.
Nat Mater ; 19(12): 1332-1338, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32541938

RESUMO

Charge-transfer (CT) complexes, formed by electron transfer from a donor to an acceptor, play a crucial role in organic semiconductors. Excited-state CT complexes, termed exciplexes, harness both singlet and triplet excitons for light emission, and are thus useful for organic light-emitting diodes (OLEDs). However, present exciplex emitters often suffer from low photoluminescence quantum efficiencies (PLQEs), due to limited control over the relative orientation, electronic coupling and non-radiative recombination channels of the donor and acceptor subunits. Here, we use a rigid linker to control the spacing and relative orientation of the donor and acceptor subunits, as demonstrated with a series of intramolecular exciplex emitters based on 10-phenyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine. Sky-blue OLEDs employing one of these emitters achieve an external quantum efficiency (EQE) of 27.4% at 67 cd m-2 with only minor efficiency roll-off (EQE = 24.4%) at a higher luminous intensity of 1,000 cd m-2. As a control experiment, devices using chemically and structurally related but less rigid emitters reach substantially lower EQEs. These design rules are transferrable to other donor/acceptor combinations, which will allow further tuning of emission colour and other key optoelectronic properties.

5.
Angew Chem Int Ed Engl ; 56(6): 1571-1575, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035781

RESUMO

The development of efficient metal-free organic emitters with thermally activated delayed fluorescence (TADF) properties for deep-blue emission is still challenging. A new family of deep-blue TADF emitters based on a donor-acceptor architecture has been developed. The electronic interaction between donor and acceptor plays a key role in the TADF mechanism. Deep-blue OLEDs fabricated with these TADF emitters achieved high external quantum efficiencies over 19.2 % with CIE coordinates of (0.148, 0.098).

6.
Angew Chem Int Ed Engl ; 56(52): 16536-16540, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29105906

RESUMO

A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state (3 LE) and charge-transfer triplet state (3 CT) to the charge-transfer singlet state (1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes.

7.
Chemistry ; 22(3): 916-24, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26586115

RESUMO

A series of novel AIE-active (aggregation-induced emission) molecules, named SAF-2-TriPE, SAF-3-TriPE, and SAF-4-TriPE, were designed and synthesized through facile reaction procedures. We found that incorporation of the spiro-acridine-fluorene (SAF) group, which is famous for its excellent hole-transporting ability and rigid structure, at different substitution positions on the phenyl ring affected the conjugation lengths of these compounds. Consequently, we have obtained molecules with different emission colors and properties without sacrificing good EL (electroluminescence) characteristics. Accordingly, a device that was based on compound SAF-2-TriPE displayed superior EL characteristics: it emitted green light with ηc, max =10.5 cd A(-1) and ηext, max =4.22 %, whereas a device that was based on compound SAF-3-TriPE emitted blue-green light with ηc, max =3.9 cd A(-1) and ηext, max = 1.71 %. These compounds also displayed different AIE performances: when the fraction of water in the THF solutions of these compounds was increased, we observed a significant improvement in the ΦF of compounds SAF-2-TriPE and SAF-3-TriPE; in contrast, compound SAF-4-TriPE showed an abnormal phenomenon, in that it emitted a strong fluorescence in both pure THF solution and in the aggregated state without a significant change in ΦF . Overall, this systematic study confirmed a relationship between the regioisomerism of the luminophore structure and its AIE activity and the resulting electroluminescent performance in non-doped devices.

8.
Angew Chem Int Ed Engl ; 55(24): 6864-8, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27101424

RESUMO

Much effort has been devoted to developing highly efficient organic light-emitting diodes (OLEDs) that function through phosphorescence or thermally activated delayed fluorescence (TADF). However, efficient host materials for blue TADF and phosphorescent guest emitters are limited because of their requirement of high triplet energy levels. Herein, we report the rigid acceptor unit benzimidazobenzothiazole (BID-BT), which is suitable for use in bipolar hosts in blue OLEDs. The designed host materials, based on BID-BT, possess high triplet energy and bipolar carrier transport ability. Both blue TADF and phosphorescent OLEDs containing BID-BT-based derivatives exhibit external quantum efficiencies as high as 20 %, indicating that these hosts allow efficient triplet exciton confinement appropriate for blue TADF and phosphorescent guest emitters.

9.
Adv Mater ; : e2313602, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598847

RESUMO

Organic luminescent materials that exhibit thermally activated delayed fluorescence (TADF) can convert non-emissive triplet excitons into emissive singlet states through a reverse intersystem crossing (RISC) process. Therefore, they have tremendous potential for applications in organic light-emitting diodes (OLEDs). However, with the development of ultra-high definition 4K/8K display technologies, designing efficient deep-blue TADF materials to achieve the Commission Internationale de l'Éclairage (CIE) coordinates fulfilling BT.2020 remains a significant challenge. Here, an effective approach is proposed to design deep-blue TADF molecules based on hybrid long- and short-range charge-transfer by incorporation of multiple donor moieties into organoboron multiple resonance acceptors. The resulting TADF molecule exhibits deep-blue emission at 414 nm with a full width at half maximum (FWHM) of 29 nm, together with a thousand-fold increase in RISC rate. OLEDs based on the champion material achieve a record maximum external quantum efficiency (EQE) of 22.8% with CIE coordinates of (0.163, 0.046), approaching the coordinates of the BT.2020 blue standard. Moreover, TADF-assisted fluorescence devices employing the designed material as a sensitizer exhibit an exceptional EQE of 33.1%. This work thus provides a blueprint for future development of efficient deep-blue TADF emitters, representing an important milestone towards meeting the blue color gamut standard of BT.2020.

10.
Chemistry ; 19(35): 11791-7, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23861257

RESUMO

A novel silicon-based compound, 10-phenyl-2'-(triphenylsilyl)-10H-spiro[acridine-9,9'-fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton-blocking material in blue phosphorescent organic light-emitting diodes (PhOLEDs). Accordingly, blue-emitting devices with iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C(2)']picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll-off. In particular, 44.0 cd A(-1) (41.3 lm W(-1)) at 100 cd m(-2) and 41.9 cd A(-1) (32.9 lm W(-1)) at 1000 cd m(-2) were achieved when SSTF was used as host material; 28.1 lm W(-1) at 100 cd m(-2) and 20.6 lm W(-1) at 1000 cd m(-2) were achieved when SSTF was used as exciton-blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.

11.
Nanoscale ; 15(34): 14249-14256, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602367

RESUMO

All fluorescence white organic light-emitting diodes (WOLEDs) based on thermally activated delayed fluorescence (TADF) emitters are an attractive route to realize highly efficient and high color quality white light sources. However, harvesting triplet excitons in these devices remains a formidable challenge, particularly for WOLEDs involving conventional fluorescent emitters. Herein, we report a universal design strategy based on a co-host system and a cascaded exciton transfer configuration. The co-host system furnishes a broad and charge-balanced exciton generation zone, which simultaneously endows the devices with low efficiency roll-off and good color stability. A yellow TADF layer is put forward as an intermediate sensitizer layer between the blue TADF light-emitting layer (EML) and the red fluorescence EML, which not only constructs an efficient cascaded Förster energy transfer route but also blocks the triplet exciton loss channel through Dexter energy transfer. With the proposed design strategy, three-color all fluorescence WOLEDs reach a maximum external quantum efficiency (EQE) of 22.4% with a remarkable color rendering index (CRI) of 92 and CIE coordinates of (0.37, 0.40). Detailed optical simulation confirms the high exciton utilization efficiency. Finally, by introducing an efficient blue emitter 5Cz-TRZ, a maximum EQE of 30.1% is achieved with CIE coordinates of (0.42, 0.42) and a CRI of 84 at 1000 cd m-2. These outstanding results demonstrate the great potential of all fluorescence WOLEDs in solid-state lighting and display panels.

12.
Org Lett ; 24(10): 1877-1882, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244403

RESUMO

Here, we report the synthesis of a novel class of B-N Lewis pair (LPB/N)-doped large acene derivatives (1a-1d) from the well-designed phenanthridine-based precursors. The resultant LPB/N-doped benzo-tetracene (1a), dibenzo-heptacene (1b), dibenzo-octacene (1c), and V-shaped tribenzo-nonacene (1d) are thoroughly characterized by X-ray crystallography, cyclic voltammetry, UV-vis absorption, and fluorescence spectroscopies together with DFT calculations. As a proof of concept, a 1a-based organic light-emitting diode device is fabricated to demonstrate the promising application in organic optoelectronics.

14.
Nat Commun ; 12(1): 6640, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789719

RESUMO

Engineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105 cm-1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 µs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters.

15.
Adv Mater ; 33(45): e2103640, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34558117

RESUMO

Metal halide perovskite semiconductors have demonstrated remarkable potentials in solution-processed blue light-emitting diodes (LEDs). However, the unsatisfied efficiency and spectral stability responsible for trap-mediated non-radiative losses and halide phase segregation remain the primary unsolved challenges for blue perovskite LEDs. In this study, it is reported that a fluorene-based π-conjugated cationic polymer can be blended with the perovskite semiconductor to control film formation and optoelectronic properties. As a result, sky-blue and true-blue perovskite LEDs with Commission Internationale de l'Eclairage coordinates of (0.08, 0.22) and (0.12, 0.13) at the record external quantum efficiencies of 11.2% and 8.0% were achieved. In addition, the mixed halide perovskites with the conjugated cationic polymer exhibit excellent spectral stability under external bias. This result illustrates that π-conjugated cationic polymers have a great potential to realize efficient blue mixed-halide perovskite LEDs with stable electroluminescence.

16.
Adv Mater ; 32(48): e2003885, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118645

RESUMO

In this work, two novel thermally activated delayed fluorescence (TADF) emitters, 2tDMG and 3tDMG, are synthesized for high-efficiency organic light-emitting diodes (OLEDs), The two emitters have a tilted face-to-face alignment of donor (D)/acceptor (A) units presenting intramolecular noncovalent interactions. The two TADF materials are deposited either by an evaporation-process or by a solution-process, both of them leading to high OLED performance. 2tDMG used as the emitter in evaporation-processed OLEDs achieves a high external quantum efficiency (EQE) of 30.8% with a very flat efficiency roll-off of 7% at 1000 cd m-2 . The solution-processed OLEDs also display an interesting EQE of 16.2%. 3tDMG shows improved solubility and solution processability as compared to 2tDMG, and thus a high EQE of 20.2% in solution-processed OLEDs is recorded. The corresponding evaporation-processed OLEDs also reach a reasonably high EQE of 26.3%. Encouragingly, this work provides a novel strategy to address the imperious demands for OLEDs with high EQE and low roll-off.

17.
Nat Commun ; 8(1): 2250, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269827

RESUMO

Organic light-emitting diodes have become a mainstream display technology because of their desirable features. Third-generation electroluminescent devices that emit light through a mechanism called thermally activated delayed fluorescence are currently garnering much attention. However, unsatisfactory device stability is still an unresolved issue in this field. Here we demonstrate that electron-transporting n-type hosts, which typically include an acceptor moiety in their chemical structure, have the intrinsic ability to balance the charge fluxes and broaden the recombination zone in delayed fluorescence organic electroluminescent devices, while at the same time preventing the formation of high-energy excitons. The n-type hosts lengthen the lifetimes of green and blue delayed fluorescence devices by > 30 and 1000 times, respectively. Our results indicate that n-type hosts are suitable to realize stable delayed fluorescence organic electroluminescent devices.

18.
Chem Commun (Camb) ; 52(52): 8149-51, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27276277

RESUMO

A thermally activated delayed fluorescence material 2,6-bis(9,9-diphenylacridin-10(9H)-yl)pyrazine was designed and synthesized. The twisted configuration made it possesses very small singlet-triplet splitting. A red electroluminescent device based on this new host material is able to achieve ∼26% external quantum efficiency and relatively flat efficiency roll-off.

19.
ACS Appl Mater Interfaces ; 8(31): 20230-6, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27438586

RESUMO

Borane is an excellent electron-accepting species, and its derivatives have been widely used in a variety of fields. However, the use of borane derivatives as host materials in OLEDs has rarely reported because the device performance is generally not satisfactory. In this work, two novel spiro-bipolar hosts with incorporated borane were designed and synthesized. The strategies used in preparing these materials were to increase the spatial separation of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) in the molecules, tune the connecting positions of functional groups, and incorporate specific functional groups with desirable thermal stability. Based on these designs, phosphorescent OLEDs with borane derivatives as hosts and with outstanding device performances were obtained. In particular, devices based on SAF-3-DMB/FIrpic exhibited an external quantum efficiency (EQE) of >25%. More encouragingly, the device was found to have quite a low efficiency roll-off, giving an efficiency of >20% even at a high brightness of 10000 cd/m(2). Furthermore, the EQE of the three-color-based (R + G + B) white OLED employing SAF-3-DMB as a host was also as high as 22.9% with CIE coordinates of (x, y) = (0.40, 0.48). At a brightness of 5000 cd/m(2), there was only a 3% decrease in EQE from its maximum value, implying a very low efficiency roll-off.

20.
Adv Mater ; 28(35): 7620-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27337524

RESUMO

Efficient sky-blue organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) display a three orders of magnitude increase in lifetime, which is superior to those of controlled phosphorescent OLEDs used in this study. The combination of electro-oxidation and photo-oxidation of the TADF emitters in their triplet excited-states is suppressed through molecule design and device engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA