Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(3): 1447-1494, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38164808

RESUMO

Cost-effective and high-efficiency catalysts play a central role in various sustainable electrochemical energy conversion technologies that are being developed to generate clean energy while reducing carbon emissions, such as fuel cells, metal-air batteries, water electrolyzers, and carbon dioxide conversion. In this context, a recent climax in the exploitation of advanced earth-abundant catalysts has been witnessed for diverse electrochemical reactions involved in the above mentioned sustainable pathways. In particular, polymer catalysts have garnered considerable interest and achieved substantial progress very recently, mainly owing to their pyrolysis-free synthesis, highly tunable molecular composition and microarchitecture, readily adjustable electrical conductivity, and high stability. In this review, we present a timely and comprehensive overview of the latest advances in organic polymers as emerging materials for powerful electrocatalysts. First, we present the general principles for the design of polymer catalysts in terms of catalytic activity, electrical conductivity, mass transfer, and stability. Then, the state-of-the-art engineering strategies to tailor the polymer catalysts at both molecular (i.e., heteroatom and metal atom engineering) and macromolecular (i.e., chain, topology, and composition engineering) levels are introduced. Particular attention is paid to the insightful understanding of structure-performance correlations and electrocatalytic mechanisms. The fundamentals behind these critical electrochemical reactions, including the oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, oxygen evolution reaction, and hydrogen oxidation reaction, as well as breakthroughs in polymer catalysts, are outlined as well. Finally, we further discuss the current challenges and suggest new opportunities for the rational design of advanced polymer catalysts. By presenting the progress, engineering strategies, insightful understandings, challenges, and perspectives, we hope this review can provide valuable guidelines for the future development of polymer catalysts.

2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34588309

RESUMO

The ability to create highly efficient and stable bifunctional electrocatalysts, capable of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in the same electrolyte, represents an important endeavor toward high-performance zinc-air batteries (ZABs). Herein, we report a facile strategy for crafting wrinkled MoS2/N-doped carbon core/shell nanospheres interfaced with single Fe atoms (denoted MoS2@Fe-N-C) as superior ORR/OER bifunctional electrocatalysts for robust wearable ZABs with a high capacity and outstanding cycling stability. Specifically, the highly crumpled MoS2 nanosphere core is wrapped with a layer of single-Fe-atom-impregnated, N-doped carbon shell (i.e., Fe-N-C shell with well-dispersed FeN4 sites). Intriguingly, MoS2@Fe-N-C nanospheres manifest an ORR half-wave potential of 0.84 V and an OER overpotential of 360 mV at 10 mA⋅cm-2 More importantly, density functional theory calculations reveal the lowered energy barriers for both ORR and OER, accounting for marked enhanced catalytic performance of MoS2@Fe-N-C nanospheres. Remarkably, wearable ZABs assembled by capitalizing on MoS2@Fe-N-C nanospheres as an air electrode with an ultralow area loading (i.e., 0.25 mg⋅cm-2) display excellent stability against deformation, high special capacity (i.e., 442 mAh⋅g-1Zn), excellent power density (i.e., 78 mW⋅cm-2) and attractive cycling stability (e.g., 50 cycles at current density of 5 mA⋅cm-2). This study provides a platform to rationally design single-atom-interfaced core/shell bifunctional electrocatalysts for efficient metal-air batteries.

3.
Proc Natl Acad Sci U S A ; 118(7)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558243

RESUMO

The ability to develop highly active and low-cost electrocatalysts represents an important endeavor toward accelerating sluggish water-oxidation kinetics. Herein, we report the implementation and unraveling of the photothermal effect of spinel nanoparticles (NPs) on promoting dynamic active-sites generation to markedly enhance their oxygen evolution reaction (OER) activity via an integrated operando Raman and density functional theory (DFT) study. Specifically, NiFe2O4 (NFO) NPs are first synthesized by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors. Upon the near-infrared light irradiation, the photothermal heating of the NFO-based electrode progressively raises the temperature, accompanied by a marked decrease of overpotential. Accordingly, only an overpotential of 309 mV is required to yield a high current density of 100 mA cm-2, greatly lower than recently reported earth-abundant electrocatalysts. More importantly, the photothermal effect of NFO NPs facilitates surface reconstruction into high-active oxyhydroxides at lower potential (1.36 V) under OER conditions, as revealed by operando Raman spectroelectrochemistry. The DFT calculation corroborates that these reconstructed (Ni,Fe)oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced over pure NFO without surface reconstruction. Given the diversity of materials (metal oxides, sulfides, phosphides, etc.) possessing the photo-to-thermal conversion, this effect may thus provide a unique and robust platform to boost highly active surface species in nanomaterials for a fundamental understanding of enhanced performance that may underpin future advances in electrocatalysis, photocatalysis, solar-energy conversion, and renewable-energy production.

4.
Angew Chem Int Ed Engl ; 63(26): e202405594, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38638107

RESUMO

Conjugated polymers with tailorable composition and microarchitecture are propitious for modulating catalytic properties and deciphering inherent structure-performance relationships. Herein, we report a facile linker engineering strategy to manipulate the electronic states of metallophthalocyanine conjugated polymers and uncover the vital role of organic linkers in facilitating electrocatalytic oxygen reduction reaction (ORR). Specifically, a set of cobalt phthalocyanine conjugated polymers (CoPc-CPs) wrapped onto carbon nanotubes (denoted CNTs@CoPc-CPs) are judiciously crafted via in situ assembling square-planar cobalt tetraaminophthalocyanine (CoPc(NH2)4) with different linear aromatic dialdehyde-based organic linkers in the presence of CNTs. Intriguingly, upon varying the electronic characteristic of organic linkers from terephthalaldehyde (TA) to 2,5-thiophenedicarboxaldehyde (TDA) and then to thieno/thiophene-2,5-dicarboxaldehyde (bTDA), their corresponding CNTs@CoPc-CPs exhibit gradually improved electrocatalytic ORR performance. More importantly, theoretical calculations reveal that the charge transfer from CoPc units to electron-withdrawing linkers (i.e., TDA and bTDA) drives the delocalization of Co d-orbital electrons, thereby downshifting the Co d-band energy level. Accordingly, the active Co centers with more positive valence state exhibit optimized binding energy toward ORR-relevant intermediates and thus a balanced adsorption/desorption pathway that endows significant enhancement in electrocatalytic ORR. This work demonstrates a molecular-level engineering route for rationally designing efficient polymer catalysts and gaining insightful understanding of electrocatalytic mechanisms.

5.
Angew Chem Int Ed Engl ; 62(41): e202307504, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345265

RESUMO

The past decade has witnessed the great potential of Fe-based single-atom electrocatalysis in catalyzing oxygen reduction reaction (ORR). However, it remains a grand challenge to substantially improve their intrinsic activity and long-term stability in acidic electrolytes. Herein, we report a facile chemical vapor deposition strategy, by which high-density Fe atoms (3.97 wt%) are coordinated with square-planar para-positioned nitrogen and phosphorus atoms in a hierarchical carbon framework. The as-crafted atomically dispersed Fe catalyst (denoted Fe-SA/PNC) manifests an outstanding activity towards ORR over the entire pH range. Specifically, the half-wave potential of 0.92 V, 0.83 V, and 0.86 V vs. reversible hydrogen electrode (RHE) are attained in alkaline, neutral, and acidic electrolytes, respectively, representing the high performance among reported catalysts to date. Furthermore, after 30,000 durability cycles, the Fe-SA/PNC remains to be stable with no visible performance decay when tested in 0.1 M KOH and 0.5 M H2 SO4 , and only a minor negative shift of 40 mV detected in 0.1 M HClO4 , significantly outperforming commercial Pt/C counterpart. The coordination motif of Fe-SA/PNC is validated by density functional theory (DFT) calculations. This work provides atomic-level insight into improving the activity and stability of non-noble metal ORR catalysts, opening up an avenue to craft the desired single-atom electrocatalysts.

6.
Chem Soc Rev ; 50(15): 8428-8469, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34259239

RESUMO

A climax in the development of cost-effective and high-efficiency transition metal-based electrocatalysts has been witnessed recently for sustainable energy and related conversion technologies. In this regard, structure-activity relationships based on several descriptors have already been proposed to rationally design electrocatalysts. However, the dynamic reconstruction of the surface structures and compositions of catalysts during electrocatalytic water oxidation, especially during the anodic oxygen evolution reaction (OER), complicate the streamlined prediction of the catalytic activity. With the achievements in operando and in situ techniques, it has been found that electrocatalysts undergo surface reconstruction to form the actual active species in situ accompanied with an increase in their oxidation state during OER in alkaline solution. Accordingly, a thorough understanding of the surface reconstruction process plays a critical role in establishing unambiguous structure-composition-property relationships in pursuit of high-efficiency electrocatalysts. However, several issues still need to be explored before high electrocatalytic activities can be realized, as follows: (1) the identification of initiators and pathways for surface reconstruction, (2) establishing the relationships between structure, composition, and electrocatalytic activity, and (3) the rational manipulation of in situ catalyst surface reconstruction. In this review, the recent progress in the surface reconstruction of transition metal-based OER catalysts including oxides, non-oxides, hydroxides and alloys is summarized, emphasizing the fundamental understanding of reconstruction behavior from the original precatalysts to the actual catalysts based on operando analysis and theoretical calculations. The state-of-the-art strategies to tailor the surface reconstruction such as substituting/doping with metals, introducing anions, incorporating oxygen vacancies, tuning morphologies and exploiting plasmonic/thermal/photothermal effects are then introduced. Notably, comprehensive operando/in situ characterization together with computational calculations are responsible for unveiling the improvement mechanism for OER. By delivering the progress, strategies, insights, techniques, and perspectives, this review will provide a comprehensive understanding of the surface reconstruction in transition metal-based OER catalysts and future guidelines for their rational development.

7.
Korean J Physiol Pharmacol ; 26(6): 469-478, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302622

RESUMO

WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) ß and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-ß activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC-TAK1-ATF2-TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT-ANP signaling is implicated in cardiac physiology and pathophysiology.

8.
J Nutr ; 151(6): 1401-1406, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33768223

RESUMO

BACKGROUND: Although recent studies have revealed an association between the composition of the gut microbiota and obesity, whether specific gut microbiota cause obesity has not been determined. OBJECTIVES: The aim of this study is to determine the causal relationship between specific gut microbiota and abdominal obesity. Based on genome-wide association study (GWAS) summary statistics, we performed a 2-sample Mendelian randomization (MR) analysis to evaluate whether the gut microbiota affects abdominal obesity. METHODS: Gut microbiota GWAS in 1126 twin pairs (age range, 18-89 years; 89% were females) from the TwinsUK study were used as exposure data. The primary outcome tested was trunk fat mass (TFM) GWAS in 492,805 participants (age range, 40-69 years; 54% were females) from the UK Biobank. The gut microbiota were classified at family, genus, and species levels. A feature was defined as a distinct family, genus, or species. MR analysis was mainly performed by an inverse variance-weighted test or Wald ratio test, depending on the number of instrumental variables (IVs) involved. A sensitivity analysis was performed on significant results by a weighted median test and a weighted genetic risk score (GRS) analysis. RESULTS: Results of MR analyses provided evidence of a causal association between 3 microbiota features and TFM, including 1 family [Lachnosiraceae; P = 0.02; ß = 0.001 (SEE, 4.28 × 10-4)], 1 genus [Bifidobacterium; P = 5.0 × 10-9; ß = -0.08 (SEE, 0.14)], and 1 species [Prausnitzii; P = 0.03; ß = -0.007 (SEE, 0.003)]. Both the weighted median test and GRS analysis successfully validated the association of the genetically predicted family, Lachnosiraceae (Pweighted median = 0.03; PGRS = 0.004). CONCLUSIONS: Our findings provided evidence of a causal association between gut microbiota and TFM in UK adults and identified specific bacteria taxa that may regulate the fat metabolism, thus offering new direction for the treatment of obesity.


Assuntos
Microbioma Gastrointestinal , Análise da Randomização Mendeliana , Obesidade Abdominal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal/genética , Obesidade Abdominal/microbiologia , Adulto Jovem
9.
Can J Physiol Pharmacol ; 99(11): 1184-1190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34612711

RESUMO

Genistein, an isoflavonoid that can inhibit protein tyrosine kinase (PTK) phosphorylation, has been shown to play pivotal roles in the signal transduction pathways of hypoxic disorders. In this study, we established a rat model of isolated beating atrium and investigated the regulator role of genistein and its downstream signaling pathways in acute hypoxia-induced atrial natriuretic peptide (ANP) secretion. Radioimmunoassay was used to detect the ANP content in the atrial perfusates. Western blot analysis was used to determine the protein level of hypoxia-inducible factor 1α (HIF-1α), and GATA4 in the atrial tissue. The results showed that acute hypoxia substantially promoted ANP secretion, whereas this effect was partly attenuated by the PTKs inhibitor genistein (3 µM). By Western blotting analysis, we found that hypoxia-induced increase in phosphorylation of Akt and transcriptional factors, including HIF-1α, were also reversed by genistein. The perfused HIF-1α inhibitors rotenone (0.5 µM) or CAY10585 (10 µM) plus genistein significantly abolished the enhanced ANP section induced by hypoxia. Additionally, the perfused PI3K/Akt agonist insulin-like growth factor 1 (30 µM) also abolished ANP secretion induced by genistein and inhibited expression of HIF-1α. In summary, our data suggested that acute hypoxia markedly increased ANP secretion by PTKs through the phosphoinositide-3 kinase (PI3K)/HIF-1α dependent pathway.


Assuntos
Fator Natriurético Atrial/metabolismo , Genisteína/farmacologia , Átrios do Coração/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Animais , Técnicas In Vitro , Ratos Sprague-Dawley
10.
Korean J Physiol Pharmacol ; 25(2): 159-166, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602886

RESUMO

Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 µM) and BQ788 (0.3 µM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 µM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 µM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxiaactivated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 µM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 µM) and LY294002 (10.0 µM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

11.
Angew Chem Int Ed Engl ; 59(4): 1611-1618, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31664750

RESUMO

The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high-efficiency solar energy conversion. Now, a simple yet robust acid-treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron-transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2 , thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2 -coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2 . Compared to pristine TiO2 -based devices, the perovskite solar cells (PSCs) with acid-treated TiO2 ETL exhibit an enhanced short-circuit current and power conversion efficiency.

12.
Anal Chem ; 91(22): 14530-14537, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31617350

RESUMO

In this study, an accurately and digitally regulated allosteric nanoswitch based on the conformational control of two DNA hairpins was developed. By switching between UV irradiation and blue light conditions, the second molecular beacon (H#2) would bind/separate with a repression sequence (RES) via the introduced PTG molecules (a photosensitive azobenzene derivative), resulting in the target aptamer sequence in the first molecular beacon (H#1) not being able/being able to hold the stem-loop configuration, hence losing/regaining the ability to bind with the target. Importantly, we successfully monitor conformation changes of the nanoswitch by an elegant mathematical model for connecting Ki (the dissociation constant between RES and H#2) with Kd (the overall equilibrium constant of the nanoswitch binding the target), hence realizing "observing" DNA structure across dimensions from "structural visualization" to digitization and, accurately, digitally regulating DNA structure from digitization to "structural visualization".


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Nanoestruturas/química , Compostos Azo/química , Compostos Azo/efeitos da radiação , DNA/metabolismo , DNA/efeitos da radiação , Sequências Repetidas Invertidas , Ligantes , Modelos Químicos , Conformação de Ácido Nucleico/efeitos da radiação , Trombina/metabolismo , Raios Ultravioleta
13.
Artigo em Inglês | MEDLINE | ID: mdl-29287795

RESUMO

Lipocalin-type prostaglandin D synthase (L-PGDS) and peroxisome proliferator activated receptor γ (PPARγ) play important roles in cardiovascular diseases. Nevertheless, effects of hypoxia-inducible factor 1α (HIF-1α) on L-PGDS and PPARγ protein levels and its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion are unclear. In perfused beating rat atria, we observed that hypoxia significantly increased HIF-1α protein levels and stimulated ANP secretion, while upregulating L-PGDS. Hypoxia-induced ANP secretion was clearly attenuated by HIF-1α antagonist 2-methoxyestradiol, downregulating both HIF-1α and L-PGDS protein levels. It was also attenuated by L-PGDS antagonists, AT-56 and HQL-49, downregulating L-PGDS protein levels. In addition, hypoxia-induced ANP secretion was accompanied by increased PPARγ protein levels and was strongly attenuated by PPARγ antagonist GW9662. Hypoxia-induced increase in atrial PPARγ protein levels were dramatically inhibited by both 2-methoxyestradiol and AT-56. These results indicated that hypoxia promotes ANP secretion, at least in part, by activating HIF-1α-l-PGDS-PPARγ signaling in beating rat atria.


Assuntos
Função Atrial , Fator Natriurético Atrial/metabolismo , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , PPAR gama/metabolismo , Animais , Hipóxia Celular , Feminino , Regulação da Expressão Gênica , Masculino , Ratos
14.
Angew Chem Int Ed Engl ; 57(8): 2046-2070, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-28786158

RESUMO

Inorganic nanoparticles have become a research focus in numerous fields because of their unique properties that distinguish them from their bulk counterparts. Controlling the size and shape of nanoparticles is an essential aspect of nanoparticle synthesis. Preparing inorganic nanoparticles by using block copolymer templates is one of the most reliable routes for tuning the size and shape of nanoparticles with a high degree of precision. In this Review, we discuss recent progress in the design of block copolymer templates for crafting spherical inorganic nanoparticles including compact, hollow, and core-shell varieties. The templates are divided into two categories: micelles self-assembled from linear block copolymers and unimolecular star-shaped block copolymers. The precise control over the size and morphology of nanoparticles is highlighted as well as the useful properties and applications of such inorganic nanoparticles.

15.
Metab Eng ; 42: 85-97, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28603040

RESUMO

Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering.


Assuntos
Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Engenharia Metabólica/métodos , Humanos
16.
Molecules ; 22(2)2017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28208674

RESUMO

In an attempt to search for more potent positive inotropic agents, two series of [1,2,4]triazolo[4,3-a] quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties were synthesized and their positive inotropic activities evaluated by measuring left atrial stroke volume in isolated rabbit heart preparations. Several compounds showed favorable activities compared with the standard drug, milrinone. Compound 6c was the most potent agent, with an increased stroke volume of 12.53% ± 0.30% (milrinone: 2.46% ± 0.07%) at 3 × 10-5 M. The chronotropic effects of compounds having considerable inotropic effects were also evaluated.


Assuntos
Cardiotônicos/síntese química , Cardiotônicos/farmacologia , Piperazinas/química , Quinoxalinas/síntese química , Quinoxalinas/farmacologia , Animais , Relação Dose-Resposta a Droga , Átrios do Coração/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Milrinona/farmacologia , Estrutura Molecular , Contração Miocárdica/efeitos dos fármacos , Coelhos , Volume Sistólico/efeitos dos fármacos
17.
Korean J Physiol Pharmacol ; 21(3): 293-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28461771

RESUMO

Prostaglandin D2 (PGD2) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of PGD2 in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether PGD2 can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. PGD2 (0.1 to 10 µM) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of PGD2 on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 (1.0 µM) and AL-8810 (1.0 µM), PGD2 and prostaglandin F2α (PGF2α) receptor antagonists, respectively. Moreover, PGD2 clearly upregulated atrial peroxisome proliferator-activated receptor gamma (PPARγ) and the PGD2 metabolite 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, 0.1 µM) dramatically increased atrial ANP secretion. Increased ANP secretions induced by PGD2 and 15d-PGJ2 were completely blocked by the PPARγ antagonist GW9662 (0.1 µM). PD98059 (10.0 µM) and LY294002 (1.0 µM), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by PGD2. These results indicated that PGD2 stimulated atrial ANP secretion and promoted positive inotropy by activating PPARγ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating PGD2-induced atrial ANP secretion.

18.
Angew Chem Int Ed Engl ; 56(16): 4488-4493, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28332755

RESUMO

Three-dimensional (3D) interconnected metal alloy nanostructures possess superior catalytic performance owing to their advantageous characteristics, including improved catalytic activity, corrosion resistance, and stability. Hierarchically structured Ni-Cu alloys composed of 3D network-like microscopic branches with nanoscopic dendritic feelers on each branch were crafted by a facile and efficient hydrogen evolution-assisted electrodeposition approach. They were subsequently exploited for methanol electrooxidation in alkaline media. Among three hierarchically structured Ni-Cu alloys with different Ni/Cu ratios (Ni0.25 Cu0.75 , Ni0.50 Cu0.50 , and Ni0.75 Cu0.25 ), the Ni0.75 Cu0.25 electrode exhibited the fastest electrochemical response and highest electrocatalytic activity toward methanol oxidation. The markedly enhanced performance of Ni0.75 Cu0.25 eletrocatalyst can be attributed to its alloyed structure with the proper Ni/Cu ratio and a large number of active sites on the surface of hierarchical structures.

19.
Korean J Physiol Pharmacol ; 20(1): 9-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26807018

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the Na(+)-K(+)-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain (3.0 µmol/L) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 (3.0 µmol/L), an inhibitor for reverse mode of Na(+)-Ca(2+) exchangers (NCX), but did not by L-type Ca(2+) channel blocker nifedipine (1.0 µmol/L) or protein kinase A (PKA) selective inhibitor H-89 (3.0 µmol/L). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline (100.0 µmol/L), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP (0.5 µmol/L) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 (30 µmol/L), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.

20.
Phys Chem Chem Phys ; 17(43): 28626-34, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26442480

RESUMO

Single-crystalline anatase TiO2 nanobelts with a dominant surface of the {101} facet were hydrogenated and used as substrates of platinum for methanol oxidation reaction (MOR). The hydrogenated TiO2 anatase{101} supporting Pt exhibits a 228% increase of current density for methanol oxidation compared with the same system without hydrogenation under dark conditions. The synergetic interactions of hydrogenated anatase{101} with the Pt cluster were investigated through first principles calculations, and found that the hydrogenation shifts the conduction band minimum to the Fermi level of pristine TiO2, and reduces the activation barrier for methanol dissociation considerably. Thus, this work provides an experimental and theoretical basis for developing non-carbon substrates with high electro-catalytic activity toward MOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA