Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32122894

RESUMO

Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1 Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.


Assuntos
Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/veterinária , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Doenças das Aves/microbiologia , Aves/microbiologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência a Tetraciclina/genética , Tigeciclina/farmacologia , Infecções por Acinetobacter/epidemiologia , Animais , Doenças das Aves/epidemiologia , China , Transferência Genética Horizontal , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Plasmídeos , Sequenciamento Completo do Genoma
2.
J Antimicrob Chemother ; 75(6): 1479-1483, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32091099

RESUMO

OBJECTIVES: The emergence and spread of plasmid-encoded tet(X3/X4) genes that confer high-level tigecycline and eravacycline resistance in Escherichia coli and Acinetobacter spp. pose serious threats to human and animal health. We developed a rapid and robust assay to detect Tet(X3/X4) in Gram-negative bacteria based on eravacycline degradation by the presence of the Tet(X) enzyme in the test strain. METHODS: This tetracycline inactivation method (TIM) is based on the degradation of eravacycline by the Tet(X3/X4)-producing strain, which results in reduced eravacycline activity against an acid-producing thermophile Bacillus stearothermophilus indicator strain. For Tet(X)-negative strains, eravacycline retains its antimicrobial activity. Coupled with a pH-sensitive dye (bromocresol purple), the reduced colorimetric inhibition zone can be measured to determine the production of Tet(X3/X4). One hundred and eighteen isolates, including 30 tet(X4)-positive E. coli, 30 tet(X3)-positive Acinetobacter spp. and 58 tet(X)-negative E. coli and Acinetobacter spp., were examined to evaluate the performance of this TIM. RESULTS: The sensitivity and specificity for E. coli carrying tet(X4) was 96.7% and 100%, respectively, and for Acinetobacter spp. carrying tet(X3) both were 100%. The TIM assay can be completed within 6.5 h. CONCLUSIONS: The TIM is a simple, rapid and cost-effective method for the detection of plasmid-mediated high-level tigecycline resistance in E. coli and Acinetobacter spp.


Assuntos
Acinetobacter , Escherichia coli , Acinetobacter/genética , Animais , Antibacterianos/farmacologia , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos , Tigeciclina/farmacologia
3.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107122

RESUMO

OBJECTIVES: Multidrug-resistant (MDR) Gram-negative bacterial infections have limited treatment options due to the impermeability of the outer membrane. New therapeutic strategies or agents are urgently needed, and combination therapies using existing antibiotics are a potentially effective means to treat these infections. In this study, we examined whether phentolamine can enhance the antibacterial activity of macrolide antibiotics against Gram-negative bacteria and investigated its mechanism of action. METHODS: Synergistic effects between phentolamine and macrolide antibiotics were evaluated by checkerboard and time-kill assays and in vivo using a Galleria mellonella infection model. We utilized a combination of biochemical tests (outer membrane permeability, ATP synthesis, ΔpH gradient measurements, and EtBr accumulation assays) with scanning electron microscopy to clarify the mechanism of phentolamine enhancement of macrolide antibacterial activity against Escherichia coli. RESULTS: In vitro tests of phentolamine combined with the macrolide antibiotics erythromycin, clarithromycin, and azithromycin indicated a synergistic action against E. coli test strains. The fractional concentration inhibitory indices (FICI) of 0.375 and 0.5 indicated a synergic effect that was consistent with kinetic time-kill assays. This synergy was also seen for Salmonella typhimurium, Klebsiella pneumoniae, and Actinobacter baumannii but not Pseudomonas aeruginosa. Similarly, a phentolamine/erythromycin combination displayed significant synergistic effects in vivo in the G. mellonella model. Phentolamine added singly to bacterial cells also resulted in direct outer membrane damage and was able to dissipate and uncouple membrane proton motive force from ATP synthesis that, resulted in enhanced cytoplasmic antibiotic accumulation via reduced efflux pump activity. CONCLUSIONS: Phentolamine potentiates macrolide antibiotic activity via reducing efflux pump activity and direct damage to the outer membrane leaflet of Gram-negative bacteria both in vitro and in vivo.

4.
Sci Total Environ ; 858(Pt 1): 159807, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461568

RESUMO

Antibiotics have been widely used for improving human and animal health and well-being for many decades. However, the enormous antibiotic usage in agriculture especially for livestock leads to considerable quantities of antibiotic residues in associated food products and can reach potentially hazardous levels for consumers. Therefore, timely detection and systematical surveillance on residual antibiotics in food materials are of significance to minimize the negative impact caused by such unwanted antibiotic leftovers. To this end, we constructed a cloud-platform-based system (ARSCP) for comprehensive surveillance of antibiotic residues in food materials. With the system, we collected 126,560 samples from 68 chicken farms across China and detected the antibiotic residues using a rapid detection colorimetric commercial (Explorer 2.0) kit and UPLC-MS/MS. Only 108 (0.085 %) of the samples contained residual antibiotics exceeding the MRLs and all data were subjected to ARSCP system to provide a landscape of antibiotic residues in China. As a proof-of-concept, we provided an overview of residual antibiotics based on data from China, but the system is generally applicable to track and monitor the antibiotic residues globally when the data from other countries are incorporated. We used the combined Explorer 2.0 and MS data to construct ARSCP, an antimicrobial residue surveillance cloud platform for raw chicken samples. ARSCP can be used for rapid detection and real-time monitoring of antibiotic residues in animal food and provides both data management and risk warning functions. This system provides a solution to improve the management of facilities that must monitor antibiotic MRLs in food animal products that can reduce the pollution of antibiotics to the environment.


Assuntos
Anti-Infecciosos , Computação em Nuvem , Animais , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos , Ração Animal , Progressão da Doença
5.
Virulence ; 13(1): 77-88, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34951562

RESUMO

The extensive use of tetracycline antibiotics has led to the widespread presence of tetracycline-resistance genes in Gram-negative bacteria and this poses serious threats to human and animal health. In our previous study, we reported a method for rapid detection of Tet(X)-producers using MALDI-TOF MS. However, there have been multiple machineries involved in tetracycline resistance including efflux pump, and ribosomal protection protein. Our previous demonstrated the limitation in probing the non-Tet(X)-producing tetracycline-resistant strains. In this regard, we further developed a MALDI-TOF MS method to detect and differentiate Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant strains. Test strains were incubated with tigecycline and oxytetracycline in separate tubes for 3 h and then analyzed spectral peaks of tigecycline, oxytetracycline, and their metabolite. Strains were distinguished using MS ratio for [metabolite/(metabolite+ tigecycline or oxytetracycline)]. Four control strains and 319 test strains were analyzed and the sensitivity was 98.90% and specificity was 98.34%. This was consistent with the results obtained from LC-MS/MS analysis. Interestingly, we also found that the reactive oxygen species (ROS) produced by tetracycline-susceptible strains were able to promote the degradation of oxytetracycline. Overall, the MALDITet(X)-plus test represents a rapid and reliable method to detect Tet(X)-producers, non-Tet(X)-producing tetracycline-resistant strains, and tetracycline-susceptible strains.


Assuntos
Oxitetraciclina , Tetraciclina , Animais , Antibacterianos/farmacologia , Cromatografia Líquida , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem , Tetraciclina/farmacologia , Tigeciclina/farmacologia
6.
Antibiotics (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923861

RESUMO

Antimicrobial resistance is recognized as one of the major global health challenges of the 21st century. Synergistic combinations for antimicrobial therapies can be a good strategy for the treatment of multidrug resistant infections. We examined the ability of a group of 29 plant essential oils as substances which enhance the antibiotic activity. We used a modified well diffusion method to establish a high-throughput screening method for easy and rapid identification of high-level enhancement combinations against bacteria. We found that 25 essential oils possessed antibacterial activity against Escherichia Coli ATCC 25922 and methicillin-resistant Staphylococcus aureus (MRSA) 43300 with MICs that ranged from 0.01% to 2.5% v/v. We examined 319 (11 × 29) combinations in a checkerboard assay with E. Coli ATCC 25922 and MRSA 43300, and the result showed that high-level enhancement combinations were 48 and 44, low-level enhancement combinations were 214 and 211, and no effects combinations were 57 and 64, respectively. For further verification we randomly chose six combinations that included orange and Petitgrain essential oils in a standard time-killing assay. The results are in great agreement with those of the well diffusion assays. Therefore, the modified diffusion method was a rapid and effective method to screen high-level enhancement combinations of antibiotics and essential oils.

7.
Sci Total Environ ; 771: 144828, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545481

RESUMO

Overuse of antibiotics in animal husbandry has led to an increase of antibiotic resistance microorganisms as well as antibiotic-resistance genes (ARGs). Duck farming in China is practiced on a large and diverse scale and the overuse of antibiotics in this field is gaining attention recently. We evaluated the diversity of ARGs from five duck farms using a functional metagenomic approach and constructed five libraries. A total of seventy-six resistant determinants were identified, of which sixty-one were gene variants or novel genes. The novel genes contained five ß-lactamase-encoding genes designated as blaDWA1, blaDWA2, blaDWA3, blaDWA4 and blaDWB1, respectively, and two genes conferring resistance to fosfomycin designated as fosA-like1 and fosA-like2. Three of the five ß-lactamase-encoding genes were further identified as extended-spectrum ß-lactamases (ESBL) that can hydrolyze both penicillins and cephalosporins. Besides, two of the five ß-lactamase-encoding genes were associated with mobile genetic elements, indicating a high potential for transfer of the genes to other bacterial hosts. The two novel fosA-like genes were able to increase the MICs of the test Escherichia coli strain from 2 µg/mL to as high as 256 µg/mL(up to 128-fold increase). Our study provides a reference for ARGs prevalence in duck farm wastes and implies that they are an important resistome reservoir, especially for novel ARGs with high spread potential.


Assuntos
Antibacterianos , Patos , Animais , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , beta-Lactamases/genética
8.
Front Cell Infect Microbiol ; 10: 608547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409159

RESUMO

Urinary tract infections (UTI) are common infections that can be mild to life threatening. However, increased bacterial resistance and poor patient compliance rates have limited the effectiveness of conventional antibiotic therapies. Here, we investigated the relationship between nitrofurantoin and amikacin against 12 clinical MDR uropathogenic Escherichia coli (UPEC) strains both in vitro and in an experimental Galleria mellonella model. In vitro synergistic effects were observed in all 12 test strains by standard checkerboard and time-kill assays. Importantly, amikacin or nitrofurantoin at half of the clinical doses were not effective in the treatment of UPEC infections in the G. mellonella model but the combination therapy significantly increased G. mellonella survival from infections caused by all 12 study UPEC strains. Taken together, these results demonstrated synergy effects between nitrofurantoin and amikacin against MDR UPEC.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Nitrofurantoína/farmacologia , Infecções Urinárias/tratamento farmacológico
9.
Front Med (Lausanne) ; 7: 364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850887

RESUMO

Objectives: There is an urgent need for accurate and fast diagnostic tests to identify carbapenemase-producing bacteria. Here we used Bacillus stearothermophilus as an indicator strain in the format of the carbapenem inactivation method (CIM) procedure to develop a rapid carbapenemase phenotype detection method: CIMB.S. Methods: The CIMB.S test was derived from the mCIM, where B. stearothermophilus replaced Escherichia coli as the indicator strain. The test bacteria were incubated in the presence of imipenem for 30 min, and then, aliquots were placed on colorimetric plates, and incubation was continued for 3.5 h at 60°C. We examined 134 clinical strains to evaluate the CIMB.S performance. Results: The CIMB.S can be completed in 4 h, and we successfully identified 38/39 (97.4%) carbapenemase-producing Enterobacteriaceae, including 17/18 (94.4%) carbapenemase-producing Pseudomonas aeruginosa and 18/19 (94.7%) carbapenemase-producing Acinetobacter baumannii. All non-carbapenemase producers we tested were negative and included Enterobacteriaceae (n = 36), P. aeruginosa (n = 17), and A. baumannii (n = 5). Conclusions: The CIMB.S test is a rapid carbapenemase phenotype detection method requiring only 4 h of total work time and displays high sensitivity and specificity.

10.
Front Microbiol ; 11: 585417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329452

RESUMO

A rapid and accurate detection of carbapenemase-producing Gram-negative bacteria (CPGNB) has an immediate demand in the clinic. Here, we developed and validated a method for rapid detection of CPGNB using Blue-Carba combined with deep learning (designated as AI-Blue-Carba). The optimum bacterial suspension concentration and detection wavelength were determined using a Multimode Plate Reader and integrated with deep learning modeling. We examined 160 carbapenemase-producing and non-carbapenemase-producing bacteria using the Blue-Carba test and a series of time and optical density values were obtained to build and validate the machine models. Subsequently, a simplified model was re-evaluated by descending the dataset from 13 time points to 2 time points. The best suitable bacterial concentration was determined to be 1.5 optical density (OD) and the optimum detection wavelength for AI-Blue-Carba was set as 615 nm. Among the 2 models (LRM and LSTM), the LSTM model generated the higher ROC-AUC value. Moreover, the simplified LSTM model trained by short time points (0-15 min) did not impair the accuracy of LSTM model. Compared with the traditional Blue-Carba, the AI-Blue-Carba method has a sensitivity of 95.3% and a specificity of 95.7% at 15 min, which is a rapid and accurate method to detect CPGNB.

11.
Front Cell Infect Microbiol ; 10: 583341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102258

RESUMO

The emergence and spread of the novel mobile Tet(X) tetracycline destructases confer high-level tigecycline and eravacycline resistance in Escherichia coli and Acinetobacter spp. and pose serious threats to human and animal health. Therefore, a rapid and robust Tet(X) detection assay was urgently needed to monitor the dissemination of tigecycline resistance. We developed a rapid and simple assay to detect Tet(X) producers in Gram-negative bacteria based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). This MALDITet(X) test was based on the inactivation of tigecycline by a Tet(X)-producing strain after a 3-h incubation of bacterial cultures with tigecycline. Culture supernatants were analyzed using MALDI-TOF MS to identify peaks corresponding to tigecycline (586 ± 0.2 m/z) and a tigecycline metabolite (602 ± 0.2 m/z). The results were calculated using the MS ratio [metabolite/(metabolite + tigecycline)]. The sensitivity of the MALDITet(X) test with all 216 test strains was 99.19%, and specificity was 100%. The test can be completed within 3 h. Overall, the MALDITet(X) test is an accurate, rapid, cost-effective method for the detection of Tet(X)-producing E. coli and Acinetobacter spp. by determining the unique peak of an oxygen-modified derivative of tigecycline.


Assuntos
Acinetobacter , Escherichia coli , Acinetobacter/genética , Animais , Antibacterianos/farmacologia , Escherichia coli/genética , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tigeciclina
12.
Genome Med ; 12(1): 111, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287863

RESUMO

BACKGROUND: The recent emergence and dissemination of high-level mobile tigecycline resistance Tet(X) challenge the clinical effectiveness of tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant Gram-negative and Gram-positive pathogens. Although tet(X) has been found in various bacterial species, less is known about phylogeographic distribution and phenotypic variance of different genetic variants. METHODS: Herein, we conducted a multiregional whole-genome sequencing study of tet(X)-positive Acinetobacter isolates from human, animal, and their surrounding environmental sources in China. The molecular and enzymatic features of tet(X) variants were characterized by clonal expression, microbial degradation, reverse transcription, and gene transfer experiments, while the tet(X) genetic diversity and molecular evolution were explored by comparative genomic and Bayesian evolutionary analyses. RESULTS: We identified 193 tet(X)-positive isolates from 3846 samples, with the prevalence ranging from 2.3 to 25.3% in nine provinces in China. The tet(X) was broadly distributed in 12 Acinetobacter species, including six novel species firstly described here. Besides tet(X3) (n = 188) and tet(X4) (n = 5), two tet(X5) variants, tet(X5.2) (n = 36) and tet(X5.3) (n = 4), were also found together with tet(X3) or tet(X4) but without additive effects on tetracyclines. These tet(X)-positive Acinetobacter spp. isolates exhibited 100% resistance rates to tigecycline and tetracycline, as well as high minimum inhibitory concentrations to eravacycline (2-8 µg/mL) and omadacycline (8-16 µg/mL). Genetic analysis revealed that different tet(X) variants shared an analogous ISCR2-mediated transposon structure. The molecular evolutionary analysis indicated that Tet(X) variants likely shared the same common ancestor with the chromosomal monooxygenases that are found in environmental Flavobacteriaceae bacteria, but sequence divergence suggested separation ~ 9900 years ago (7887 BC), presumably associated with the mobilization of tet(X)-like genes through horizontal transfer. CONCLUSIONS: Four tet(X) variants were identified in this study, and they were widely distributed in multiple Acinetobacter spp. strains from various ecological niches across China. Our research also highlighted the crucial role of ISCR2 in mobilizing tet(X)-like genes between different Acinetobacter species and explored the evolutionary history of Tet(X)-like monooxygenases. Further studies are needed to evaluate the clinical impact of these mobile tigecycline resistance genes.


Assuntos
Acinetobacter/genética , Acinetobacter/metabolismo , Genes Bacterianos/genética , Variação Genética , Tigeciclina/farmacologia , Acinetobacter/isolamento & purificação , Animais , Antibacterianos/farmacologia , Teorema de Bayes , China , Evolução Molecular , Flavobacteriaceae , Humanos , Testes de Sensibilidade Microbiana , Tetraciclinas , Sequenciamento Completo do Genoma
13.
Nat Microbiol ; 4(9): 1457-1464, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235960

RESUMO

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E. coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genes Bacterianos , Plasmídeos/genética , Tigeciclina/farmacologia , Animais , Galinhas , China/epidemiologia , Microbiologia Ambiental , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Plasmídeos/química , Suínos , Tetraciclinas/metabolismo , Tetraciclinas/farmacologia , Tigeciclina/metabolismo
14.
Front Pharmacol ; 8: 553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28874907

RESUMO

Invasive infections due to Staphylococcus aureus, including methicillin-resistant S. aureus are prevalent and life-threatening. Combinations of antibiotic therapy have been employed in many clinical settings for improving therapeutic efficacy, reducing side effects of drugs, and development of antibiotic resistance. Pleuromutilins have a potential to be developed as a new class of antibiotics for systemic use in humans. In the current study, we investigated the relationship between pleuromutilins, including valnemulin, tiamulin, and retapamulin, and 13 other antibiotics representing different mechanisms of action, against methicillin-susceptible and -resistant S. aureus both in vitro and in an experimental Galleria mellonella model. In vitro synergistic effects were observed in combination of all three study pleuromutilins with tetracycline (TET) by standard checkerboard and/or time-kill assays. In addition, the combination of pleuromutilins with ciprofloxacin or enrofloxacin showed antagonistic effects, while the rest combinations presented indifferent effects. Importantly, all study pleuromutilins in combination with TET significantly enhanced survival rates as compared to the single drug treatment in the G. mellonella model caused by S. aureus strains. Taken together, these results demonstrated synergy effects between pleuromutilins and TET against S. aureus both in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA