Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Glia ; 71(3): 616-632, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36394300

RESUMO

In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.


Assuntos
Encefalomielite Autoimune Experimental , Fator de Crescimento Insulin-Like I , Receptor IGF Tipo 1 , Animais , Camundongos , Cuprizona , Encefalomielite Autoimune Experimental/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Doenças Neuroinflamatórias , Oligodendroglia/metabolismo , Receptor IGF Tipo 1/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139248

RESUMO

Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.


Assuntos
Artrite Reumatoide , Doenças não Transmissíveis , Humanos , Ciclo-Oxigenase 2/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Biomarcadores/metabolismo , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/patologia , Inflamação/metabolismo , Receptores de GABA/metabolismo , Proteínas de Transporte/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686333

RESUMO

Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome do Desconforto Respiratório , Animais , Camundongos , Encéfalo , Cromatografia Líquida , Inflamação , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos Knockout , Receptores do Leucotrieno B4 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008590

RESUMO

About 95% of Glioblastoma (GBM) patients experience tumor relapse as a consequence of resistance to the first-line standard chemotherapy using temozolomide (TMZ). Recent studies reported consistently elevated expression levels of carbonic anhydrase CA2 in recurrent glioblastoma and temozolomide-resistant glioblastoma stem-like cells (GSCs). Here we show that CA2 is preferentially expressed in GSCs and upregulated by TMZ treatment. When expressed in GBM cell lines, CA2 exerts significant metabolic changes reflected by enhanced oxygen consumption and increased extracellular acidification causing higher rates of cell invasion. Notably, GBM cells expressing CA2 respond to combined treatment with TMZ and brinzolamide (BRZ), a non-toxic and potent CA2 inhibitor. Interestingly, brinzolamide was more effective than the pan-CA inhibitor Acetazolamide (ACZ) to sensitize naïve GSCs and TMZ-resistant GSCs to TMZ induced cell death. Mechanistically, we demonstrated that the combined treatment of GBM stem cells with TMZ and BRZ caused autophagy of GBM cell lines and GSCs, reflected by enhanced LC3 cleavage (LC3-II) and p62 reduction. Our findings illustrate the potential of CA2 as a chemo-sensitizing drug target in recurrent GBM and propose a combined treatment of TMZ with CA2 inhibitor to tackle GBM chemoresistance and recurrence.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Anidrases Carbônicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Neurochem ; 150(6): 759-775, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31188470

RESUMO

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-PHDs) are important targets against oxidative stress. We hypothesized that inhibition HIF-PHD by adaptaquin reduces hypoxic-ischemic brain injury in a neonatal mouse model. The pups were treated intraperitoneally immediately with adaptaquin after hypoxia-ischemia (HI) and then every 24 h for 3 days. Adaptaquin treatment reduced infarction volume by an average of 26.3% at 72 h after HI compared to vehicle alone, and this reduction was more pronounced in males (34.8%) than in females (11.7%). The protection was also more pronounced in the cortex. The subcortical white matter injury as measured by tissue loss volume was reduced by 24.4% in the adaptaquin treatment group, and this reduction was also more pronounced in males (28.4%) than in females (18.9%). Cell death was decreased in the cortex as indicated by Fluoro-Jade labeling, but not in other brain regions with adaptaquin treatment. Furthermore, in the brain injury area, adaptaquin did not alter the number of cells positive for caspase-3 activation or translocation of apoptosis-inducing factor to the nuclei. Adaptaquin treatment increased glutathione peroxidase 4 mRNA expression in the cortex but had no impact on 3-nitrotyrosine, 8-hydroxy-2 deoxyguanosine, or malondialdehyde production. Hif1α mRNA expression increased after HI, and adaptaquin treatment also stimulated Hif1α mRNA expression, which was also more pronounced in males than in females. However, nuclear translocation of HIF1α protein was decreased after HI, and adaptaquin treatment had no influence on HIF1α expression in the nucleus. These findings demonstrate that adaptaquin treatment is neuroprotective, but the potential mechanisms need further investigation. Read the Editorial Highlight for this article on page 645.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Caracteres Sexuais
6.
J Pharmacol Exp Ther ; 370(2): 308-317, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160469

RESUMO

Protamine sulfate (PS) is widely used in heart surgery as an antidote for heparin, albeit its pharmacological effects are not fully understood and applications are often accompanied by unwanted side effects. Here we show the effect of PS on mitochondrial bioenergetics profile resulting in mitochondrial reactive oxygen species (ROS) production. Polarographic measurements were performed in parallel to membrane potential and ROS measurements by FACS analyzer using tetramethylrhodamine ethyl ester and MitoSOX fluorescent dyes, respectively. PS inhibited intact rat heart mitochondrial respiration (stimulated by ADP) to 76% (P < 0.001) from the baseline of 51.6 ± 6.9 to 12.4 ± 2.3 nmol O2⋅min-1⋅ml-1 The same effect was found when respiration was inhibited by antimycin A (101.0 ± 8.9 vs. 38.0 ± 9.9 nmol O2 ⋅min-1⋅ml-1, P < 0.001) and later stimulated by substrates of cytochrome oxidase (CytOx) i.e., ascorbate and tetramethyl phenylene diamine, suggesting that PS exerted its effect through inhibition of CytOx activity. Furthermore, the inhibition of mitochondrial respiration by PS was concentration dependent and accompanied by hyperpolarization of the mitochondrial membrane potential (Δψ m), i.e., 18% increase at 50 µg/ml and an additional 3.3% increase at 250 µg/ml PS compared with control. This effect was associated with a strong consequent increase in the production of ROS, i.e., 85% and 88.6% compared with control respectively. We propose that this excessive increase in ROS concentrations results in mitochondrial dysfunction and thus might relate to the "protamine reaction," contributing to the development of various cardiovascular adverse effects.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Protaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Ratos Wistar
7.
Biol Chem ; 400(9): 1089-1097, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31256058

RESUMO

Actin dynamics, the coordinated assembly and disassembly of actin filaments (F-actin), are essential for fundamental cellular processes, including cell shaping and motility, cell division or organelle transport. Recent studies highlighted a novel role for actin dynamics in the regulation of mitochondrial morphology and function, for example, through mitochondrial recruitment of dynamin-related protein 1 (Drp1), a key factor in the mitochondrial fission machinery. Mitochondria are dynamic organelles, and permanent fission and fusion is essential to maintain their function in energy metabolism, calcium homeostasis and regulation of reactive oxygen species (ROS). Here, we summarize recent insights into the emerging role of cofilin1, a key regulator of actin dynamics, for mitochondrial shape and function under physiological conditions and during cellular stress, respectively. This is of peculiar importance in neurons, which are particularly prone to changes in actin regulation and mitochondrial integrity and function. In neurons, cofilin1 may contribute to degenerative processes through formation of cofilin-actin rods, and through enhanced mitochondrial fission, mitochondrial membrane permeabilization, and the release of cytochrome c. Overall, mitochondrial impairment induced by dysfunction of actin-regulating proteins such as cofilin1 emerge as important mechanisms of neuronal death with relevance to acute brain injury and neurodegenerative diseases, such as Parkinson's or Alzheimer's disease.


Assuntos
Actinas/metabolismo , Morte Celular/fisiologia , Cofilina 1/fisiologia , Neurônios/citologia , Animais , Citoesqueleto/metabolismo , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Doenças Neurodegenerativas/fisiopatologia
8.
FASEB J ; 32(11): 6159-6173, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29879376

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.


Assuntos
Coração/fisiologia , Ativação do Canal Iônico , Proteínas de Membrana/fisiologia , Neurônios/fisiologia , Marca-Passo Artificial , Animais , Proteínas de Transporte/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Feminino , Células HeLa , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte Vesicular , Xenopus laevis , Peixe-Zebra
9.
Eur Arch Psychiatry Clin Neurosci ; 269(8): 949-962, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267149

RESUMO

Genetic (G) and environmental (E) factors are involved in the etiology and course of the major psychoses (MP), i.e. major depressive disorder (MDD), bipolar disorder (BD), schizoaffective disorder (SZA) and schizophrenia (SZ). The neurobiological correlates by which these predispositions exert their influence on brain structure, function and course of illness are poorly understood. In the FOR2107 consortium, animal models and humans are investigated. A human cohort of MP patients, healthy subjects at genetic and/or environmental risk, and control subjects (N = 2500) has been established. Participants are followed up after 2 years and twice underwent extensive deep phenotyping (MR imaging, clinical course, neuropsychology, personality, risk/protective factors, biomaterials: blood, stool, urine, hair, saliva). Methods for data reduction, quality assurance for longitudinal MRI data, and (deep) machine learning techniques are employed. In the parallelised animal cluster, genetic risk was introduced by a rodent model (Cacna1c deficiency) and its interactions with environmental risk and protective factors are studied. The animals are deeply phenotyped regarding cognition, emotion, and social function, paralleling the variables assessed in humans. A set of innovative experimental projects connect and integrate data from the human and animal parts, investigating the role of microRNA, neuroplasticity, immune signatures, (epi-)genetics and gene expression. Biomaterial from humans and animals are analyzed in parallel. The FOR2107 consortium will delineate pathophysiological entities with common neurobiological underpinnings ("biotypes") and pave the way for an etiologic understanding of the MP, potentially leading to their prevention, the prediction of individual disease courses, and novel therapies in the future.


Assuntos
Encéfalo/patologia , Transtornos Psicóticos/patologia , Animais , Encéfalo/fisiopatologia , Canais de Cálcio Tipo L/deficiência , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença/genética , Humanos , Entrevista Psicológica , Imageamento por Ressonância Magnética , Masculino , MicroRNAs/metabolismo , Neuroimagem , Fenótipo , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/fisiopatologia , Ratos , Fatores de Risco
10.
J Allergy Clin Immunol ; 138(1): 47-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27373325

RESUMO

Recent research indicates that chronic inflammatory diseases, including allergies and autoimmune and neuropsychiatric diseases, share common pathways of cellular and molecular dysregulation. It was the aim of the International von-Behring-Röntgen Symposium (October 16-18, 2014, in Marburg, Germany) to discuss recent developments in this field. These include a concept of biodiversity; the contribution of urbanization, lifestyle factors, and nutrition (eg, vitamin D); and new mechanisms of metabolic and immune dysregulation, such as extracellular and intracellular RNAs and cellular and mitochondrial stress. Epigenetic mechanisms contribute further to altered gene expression and therefore to the development of chronic inflammation. These novel findings provide the foundation for further development of preventive and therapeutic strategies.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Animais , Doença Crônica , Metabolismo Energético , Meio Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Microbiota/imunologia
11.
J Biol Chem ; 288(15): 10792-804, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23430260

RESUMO

Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.


Assuntos
Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Ácido Glutâmico/genética , Ácido Glutâmico/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Potássio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
12.
Apoptosis ; 19(12): 1665-77, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25343947

RESUMO

Impaired mitochondrial integrity and function are key features of intrinsic death pathways in neuronal cells. Therefore, key regulators of intrinsic death pathways acting upstream of mitochondria are potential targets for therapeutic approaches of neuroprotection. The tumor suppressor p53 is a well-established regulator of cellular responses towards different kinds of lethal stress, including oxidative stress. Recent reports suggested that p53 may affect mitochondrial integrity and function through both, transcriptional activation of mitochondria-targeted pro-death proteins and direct effects at the mitochondrial membrane. In the present study, we compared the effects of pharmacological inhibition of p53 by pifithrin-α with those of selective p53 gene silencing by RNA interference. Using MTT assay and real-time cell impedance measurements we confirmed the protective effect of both strategies against glutamate-induced oxidative stress in immortalized mouse hippocampal HT-22 neurons. Further, we observed full restoration of mitochondrial membrane potential and inhibition of glutamate-induced mitochondrial fragmentation by pifithrin-α which was, in contrast, not achieved by p53 gene silencing. Downregulation of p53 by siRNA decreased p53 transcriptional activity and reduced expression levels of p21 mRNA, while pifithrin-α did not affect these endpoints. These results suggest a neuroprotective effect of pifithrin-α which occurred at the level of mitochondria and independently of p53 inhibition.


Assuntos
Benzotiazóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tolueno/análogos & derivados , Proteína Supressora de Tumor p53/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/genética , Tolueno/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
J Neuroinflammation ; 11: 165, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25245568

RESUMO

BACKGROUND: One hallmark of Alzheimer disease is microglial activation. Therapeutic approaches for this neurodegenerative disease include the modulation of microglial cells. α1-antitrypsin (A1AT) has been shown to exert anti-inflammatory effects on macrophages and lung epithelial cells and an inhibition of calpain activity in neutrophil granulocytes. Nothing is known about the effect of A1AT on microglial-mediated neuroinflammation. Our aim was to investigate the effect of A1AT on amyloid-ß (Aß)- and LPS-treated microglial cells in vitro with respect to cytokine production, stress pathways, cell viability, phagocytotic abilities and the underlying mechanisms. METHODS: Primary microglial cells were isolated from Swiss Webster mouse embryos on embryonic day 13.5. Cytokines in the supernatants of treated primary microglial cells were analyzed with ELISAs, and accumulated nitrite was detected with Griess reagents. Intracellular stress pathways were investigated in cell lysates using western blotting. Intracellular calcium levels were detected in BV-2 microglial cells loaded with the Ca2+-sensitive (fluorescent) dye Fluo-4. Calpain activity in primary microglial cells was assessed by using a calpain activity assay. Cell viability of Aß-treated microglial cells was analyzed using MTT assay. Phagocytosis of Aß was evaluated with western blot analysis. RESULTS: Upon co-administration, A1AT reduced pro-inflammatory mediators induced by LPS or Aß. Interestingly, we detected a reduction in calpain activity and in the concentration of intracellular calcium that might mediate the anti-inflammatory effects of A1AT. Inhibition of the classic activation pathways, such as phosphorylation of mitogen-activated protein kinases or activation of protein kinase A were excluded as a mechanism of A1AT-mediated effects. In addition, A1AT increased the viability of Aß-treated microglial cells and reduced Aß phagocytosis. CONCLUSIONS: We provide evidence on the mechanism of action of A1AT on microglial-mediated neuroinflammation in vitro. Our in vitro data indicate that A1AT treatment modulates microglial cells in inflammatory conditions and that this modulation is due to an inhibition of calpain activity and intracellular calcium levels. The underlying mechanisms of the effects observed here are promising for future therapeutic strategies and should thus be further pursued in transgenic mouse models of Alzheimer disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Inflamação/metabolismo , Microglia/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Western Blotting , Células Cultivadas , Camundongos , Microglia/efeitos dos fármacos , alfa 1-Antitripsina/farmacologia
14.
J Pharmacol Exp Ther ; 350(2): 273-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24849923

RESUMO

Mitochondrial demise is a key feature of progressive neuronal death contributing to acute and chronic neurological disorders. Recent studies identified a pivotal role for the BH3-only protein B-cell lymphoma-2 interacting domain death antagonist (Bid) for such mitochondrial damage and delayed neuronal death after oxygen-glucose deprivation, glutamate-induced excitotoxicity, or oxidative stress in vitro and after cerebral ischemia in vivo. Therefore, we developed new N-phenyl-substituted thiazolidine-2,4-dione derivatives as potent inhibitors of Bid-dependent neurotoxicity. The new compounds 6, 7, and 16 were identified as highly protective by extensive screening in a model of glutamate toxicity in immortalized mouse hippocampal neurons (HT-22 cells). These compounds significantly prevent truncated Bid-induced toxicity in the neuronal cell line, providing strong evidence that inhibition of Bid was the underlying mechanism of the observed protective effects. Furthermore, Bid-dependent hallmarks of mitochondrial dysfunction, such as loss of mitochondrial membrane potential, ATP depletion, as well as impairments in mitochondrial respiration, are significantly prevented by compounds 6, 7, and 16. Therefore, the present study identifies a class of N-phenyl thiazolidinediones as novel Bid-inhibiting neuroprotective agents that provide promising therapeutic perspectives for neurodegenerative diseases, in which Bid-mediated mitochondrial damage and associated intrinsic death pathways contribute to the underlying progressive loss of neurons.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/toxicidade , Ácido Glutâmico/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tiazolidinedionas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
15.
Front Pharmacol ; 15: 1194201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846096

RESUMO

Polypharmacy is common among patients with antithrombotic medication, giving rise to concerns about Drug-Related Problems (DRPs). Therefore, these patients would benefit from a Medication Review (MR) along with pharmacist counselling to reduce the risks accompanying polymedication. This prospective study presents a concept for MRs that are applicable in German community pharmacies and can efficiently support pharmacist counselling and improve the safety of drug therapy. As this is a major challenge in everyday pharmacy practice, we used a Decision Support System (DSS) to evaluate its ability to support the process of pharmacist-led MRs. The primary endpoint was the impact of a community pharmacist on the reduction of DRPs. We investigated the impact of the interventions resulting from MRs on patients taking at least one antithrombotic drug as part of their polymedication regimen. Secondary endpoints were the reduction in the number of patients with bleeding risks and the improvement of patients' Quality of Life (QoL) and therapy adherence. Furthermore, the DSS used in the study was controlled for correct data assessment and plausibility of data. We selected adult patients who were taking no less than three different medications for long-term treatment, at least one of which had to be an antithrombotic drug, and who were customers in one of eight selected pharmacies over a period of 6 months. Data from 87 patients were analyzed with DSS-support. A total of 234 DRPs were identified by the pharmacist (2.7 DRPs per patient). MR reduced DRPs by 43.2% which, resulting to a reduction of 1.2 DRPs per patient. The intervention also led to a significant improvement in the patients' QoL (assessed via EQ-5D-5L questionnaire; p < 0.001) and enhanced therapy adherence (assessed via A14 questionnaire; p < 0.001). The control of correct data assessment (with 93.8% concordance) and plausibility of data (with 91.7% concordance) of the DSS software were conducted by an external auditor. No significant effect was found for overall bleeding risk. The results of this study indicate that DSS-supported and structured MR conducted by pharmacists can contribute to a reduction in DRPs and significantly improve patient's QoL and adherence to treatment.

16.
Pharmaceutics ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543287

RESUMO

Cimicifuga racemosa extracts (CREs) have gained well-established use for the treatment of menopausal symptoms such as hot flushes and excessive sweating, and weight gain. While the clinical effects of CREs have been well documented, the mechanisms underlying these effects are largely unknown. More recently, the metabolic effects of the CRE Ze 450 were demonstrated in cultured cells in vitro and in mouse models of obesity in vivo. At the molecular level, metabolic regulation, enhanced insulin sensitivity, and increased glucose uptake were linked to the activation of AMP-activated protein kinase (AMPK). Therefore, we tested the effects of Ze 450 on AMPK phosphorylation and thus activation in cells from different tissues, i.e., murine C2C12 myoblast cells, human HEPG2 liver cells, mouse HT22 neuronal cells, and in murine 3T3L1 adipocytes. Using a FRET-based HTRF-assay, we found that Ze 450 induced AMPK phosphorylation and the activation of this key enzyme of metabolic regulation in cells from various different tissues including C2C12 (muscle), HEPG2 (liver), HT22 (hippocampal), and 3T3-L1 (adipocyte) cells. In C2C12 muscle cells, enhanced AMPK activation was accompanied by reduced mitochondrial respiration and enhanced glucose uptake. Further, Ze 450 enhanced the resilience of the cells against oxidative death induced by ferroptosis inducers erastin or RSL3. Our findings suggest a general effect of Cimicifuga racemosa on AMPK activation in different tissues and across species. This may have a significant impact on expanded therapeutic applications of Ze 450, since AMPK activation and the related metabolic effects have been previously associated with anti-aging effects and the prevention of the metabolic syndrome.

17.
Neurosci Biobehav Rev ; 162: 105724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762130

RESUMO

Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.


Assuntos
Envelhecimento , Doença de Alzheimer , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Humanos , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Animais , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia
18.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627584

RESUMO

Ferroptosis is a form of oxidative cell death that is characterized by enhanced lipid peroxidation and mitochondrial impairment. The enzymes acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase (LPCAT) play an essential role in the biosynthesis of polyunsaturated fatty acid (PUFA)-containing phospholipids, thereby providing the substrates for lipid peroxidation and promoting ferroptosis. To examine the impact of mitochondria in ACSL4/LPCAT2-driven ferroptosis, HEK293T cells overexpressing ACSL4 and LPCAT2 (OE) or empty vector controls (LV) were exposed to 1S, 3R-RSL3 (RSL3) for induction of ferroptosis. The ACSL4/LPCAT2 overexpression resulted in higher sensitivity against RSL3-induced cell death compared to LV-transfected controls. Moreover, mitochondrial parameters such as mitochondrial reactive oxygen species (ROS) formation, mitochondrial membrane potential, and mitochondrial respiration deteriorated in the OE cells, supporting the conclusion that mitochondria play a significant role in ACSL4/LPCAT2-driven ferroptosis. This was further confirmed through the protection of OE cells against RSL3-mediated cell death by the mitochondrial ROS scavenger mitoquinone (MitoQ), which exerted protection via antioxidative properties rather than through previously reported metabolic effects. Our findings implicate that mitochondrial ROS production and the accompanying organelle disintegration are essential for mediating oxidative cell death initiated through lipid peroxidation in ferroptosis.

19.
Antioxidants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38247469

RESUMO

Cinnamic acid, ferulic acid, and the flavonoids quercetin and taxifolin (dihydroquercetin) are naturally occurring compounds found in plants. They are often referred to as polyphenols and are known, among others, for their pharmacological effects supporting health through the inhibition of aging processes and oxidative stress. To improve their bioavailability, pharmacological activities, and safety, the creation of novel flavonoid-phenolic acid hybrids is an area of active research. Previous work showed that such hybridization products of phenolic acids and flavonoids enhanced the resilience of neuronal cells against oxidative stress in vitro, and attenuated cognitive impairment in a mouse model of Alzheimer's disease (AD) in vivo. Notably, the therapeutic effects of the hybrid compounds we obtained were more pronounced than the protective activities of the respective individual components. The underlying mechanisms mediated by the flavonoid-phenolic acid hybrids, however, remained unclear and may differ from the signaling pathways activated by the originating structures of the respective individual phenolic acids or flavonoids. In this study, we characterized the effects of four previously described potent flavonoid-phenolic acid hybrids in models of oxidative cell death through ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death characterized by lipid peroxidation and mitochondrial ROS generation and has been linked to neurodegenerative conditions. In models of ferroptosis induced by erastin or RSL3, we analyzed mitochondrial (lipid) peroxidation, mitochondrial membrane integrity, and Ca2+ regulation. Our results demonstrate the strong protective effects of the hybrid compounds against ROS formation in the cytosol and mitochondria. Importantly, these protective effects against ferroptosis were not mediated by radical scavenging activities of the phenolic hybrid compounds but through inhibition of mitochondrial complex I activity and reduced mitochondrial respiration. Our data highlight the effects of flavonoid-phenolic acid hybrids on mitochondrial metabolism and further important mitochondrial parameters that collectively determine the health and functionality of mitochondria with a high impact on the integrity and survival of the neuronal cells.

20.
Cell Death Dis ; 14(3): 173, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854658

RESUMO

Neural stem and progenitor cell (NSPC) transplants provide neuroprotection in models of acute brain injury, but the underlying mechanisms are not fully understood. Here, we provide evidence that caspase-dependent apoptotic cell death of NSPCs is required for sending survival signals to the injured brain. The secretome of dying NSPCs contains heat-stable proteins, which protect neurons against glutamate-induced toxicity and trophic factor withdrawal in vitro, and from ischemic brain damage in vivo. Our findings support a new concept suggesting a bystander effect of apoptotic NSPCs, which actively promote neuronal survival through the release of a protective "farewell" secretome. Similar protective effects by the secretome of apoptotic NSPC were also confirmed in human neural progenitor cells and neural stem cells but not in mouse embryonic fibroblasts (MEF) or human dopaminergic neurons, suggesting that the observed effects are cell type specific and exist for neural progenitor/stem cells across species.


Assuntos
Efeito Espectador , Células-Tronco Neurais , Animais , Camundongos , Humanos , Fibroblastos , Encéfalo , Neurônios Dopaminérgicos , Ácido Glutâmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA